Metamath Proof Explorer


Theorem s1s6

Description: Concatenation of fixed length strings. (Contributed by Mario Carneiro, 26-Feb-2016)

Ref Expression
Assertion s1s6 ⟨“ABCDEFG”⟩=⟨“A”⟩++⟨“BCDEFG”⟩

Proof

Step Hyp Ref Expression
1 df-s6 ⟨“BCDEFG”⟩=⟨“BCDEF”⟩++⟨“G”⟩
2 s1cli ⟨“A”⟩WordV
3 s5cli ⟨“BCDEF”⟩WordV
4 df-s7 ⟨“ABCDEFG”⟩=⟨“ABCDEF”⟩++⟨“G”⟩
5 s1s5 ⟨“ABCDEF”⟩=⟨“A”⟩++⟨“BCDEF”⟩
6 1 2 3 4 5 cats1cat ⟨“ABCDEFG”⟩=⟨“A”⟩++⟨“BCDEFG”⟩