Metamath Proof Explorer


Theorem s3cld

Description: A length 3 string is a word. (Contributed by Mario Carneiro, 27-Feb-2016)

Ref Expression
Hypotheses s2cld.1 φAX
s2cld.2 φBX
s3cld.3 φCX
Assertion s3cld φ⟨“ABC”⟩WordX

Proof

Step Hyp Ref Expression
1 s2cld.1 φAX
2 s2cld.2 φBX
3 s3cld.3 φCX
4 df-s3 ⟨“ABC”⟩=⟨“AB”⟩++⟨“C”⟩
5 1 2 s2cld φ⟨“AB”⟩WordX
6 4 5 3 cats1cld φ⟨“ABC”⟩WordX