Metamath Proof Explorer


Theorem s3eqs2s1eq

Description: Two length 3 words are equal iff the corresponding length 2 words and singleton words consisting of their symbols are equal. (Contributed by AV, 4-Jan-2022)

Ref Expression
Assertion s3eqs2s1eq AVBVCVDVEVFV⟨“ABC”⟩=⟨“DEF”⟩⟨“AB”⟩=⟨“DE”⟩⟨“C”⟩=⟨“F”⟩

Proof

Step Hyp Ref Expression
1 df-s3 ⟨“ABC”⟩=⟨“AB”⟩++⟨“C”⟩
2 1 a1i AVBVCVDVEVFV⟨“ABC”⟩=⟨“AB”⟩++⟨“C”⟩
3 df-s3 ⟨“DEF”⟩=⟨“DE”⟩++⟨“F”⟩
4 3 a1i AVBVCVDVEVFV⟨“DEF”⟩=⟨“DE”⟩++⟨“F”⟩
5 2 4 eqeq12d AVBVCVDVEVFV⟨“ABC”⟩=⟨“DEF”⟩⟨“AB”⟩++⟨“C”⟩=⟨“DE”⟩++⟨“F”⟩
6 s2cl AVBV⟨“AB”⟩WordV
7 s1cl CV⟨“C”⟩WordV
8 6 7 anim12i AVBVCV⟨“AB”⟩WordV⟨“C”⟩WordV
9 8 3impa AVBVCV⟨“AB”⟩WordV⟨“C”⟩WordV
10 9 adantr AVBVCVDVEVFV⟨“AB”⟩WordV⟨“C”⟩WordV
11 s2cl DVEV⟨“DE”⟩WordV
12 s1cl FV⟨“F”⟩WordV
13 11 12 anim12i DVEVFV⟨“DE”⟩WordV⟨“F”⟩WordV
14 13 3impa DVEVFV⟨“DE”⟩WordV⟨“F”⟩WordV
15 14 adantl AVBVCVDVEVFV⟨“DE”⟩WordV⟨“F”⟩WordV
16 s2len ⟨“AB”⟩=2
17 s2len ⟨“DE”⟩=2
18 16 17 eqtr4i ⟨“AB”⟩=⟨“DE”⟩
19 18 a1i AVBVCVDVEVFV⟨“AB”⟩=⟨“DE”⟩
20 ccatopth ⟨“AB”⟩WordV⟨“C”⟩WordV⟨“DE”⟩WordV⟨“F”⟩WordV⟨“AB”⟩=⟨“DE”⟩⟨“AB”⟩++⟨“C”⟩=⟨“DE”⟩++⟨“F”⟩⟨“AB”⟩=⟨“DE”⟩⟨“C”⟩=⟨“F”⟩
21 10 15 19 20 syl3anc AVBVCVDVEVFV⟨“AB”⟩++⟨“C”⟩=⟨“DE”⟩++⟨“F”⟩⟨“AB”⟩=⟨“DE”⟩⟨“C”⟩=⟨“F”⟩
22 5 21 bitrd AVBVCVDVEVFV⟨“ABC”⟩=⟨“DEF”⟩⟨“AB”⟩=⟨“DE”⟩⟨“C”⟩=⟨“F”⟩