Metamath Proof Explorer


Theorem wrdlen2

Description: A word of length two. (Contributed by AV, 20-Oct-2018)

Ref Expression
Assertion wrdlen2 SVTVW=0S1TWWordVW=2W0=SW1=T

Proof

Step Hyp Ref Expression
1 wrdlen2i SVTVW=0S1TWWordVW=2W0=SW1=T
2 wrd2pr2op WWordVW=2W=0W01W1
3 opeq2 W0=S0W0=0S
4 3 adantr W0=SW1=T0W0=0S
5 opeq2 W1=T1W1=1T
6 5 adantl W0=SW1=T1W1=1T
7 4 6 preq12d W0=SW1=T0W01W1=0S1T
8 2 7 sylan9eq WWordVW=2W0=SW1=TW=0S1T
9 1 8 impbid1 SVTVW=0S1TWWordVW=2W0=SW1=T