Metamath Proof Explorer


Theorem wrd2pr2op

Description: A word of length two represented as unordered pair of ordered pairs. (Contributed by AV, 20-Oct-2018) (Proof shortened by AV, 26-Jan-2021)

Ref Expression
Assertion wrd2pr2op WWordVW=2W=0W01W1

Proof

Step Hyp Ref Expression
1 wrdfn WWordVWFn0..^W
2 1 adantr WWordVW=2WFn0..^W
3 oveq2 W=20..^W=0..^2
4 fzo0to2pr 0..^2=01
5 3 4 eqtr2di W=201=0..^W
6 5 adantl WWordVW=201=0..^W
7 6 fneq2d WWordVW=2WFn01WFn0..^W
8 2 7 mpbird WWordVW=2WFn01
9 c0ex 0V
10 1ex 1V
11 9 10 fnprb WFn01W=0W01W1
12 8 11 sylib WWordVW=2W=0W01W1