| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fnprb.a |
|
| 2 |
|
fnprb.b |
|
| 3 |
1
|
fnsnb |
|
| 4 |
|
dfsn2 |
|
| 5 |
4
|
fneq2i |
|
| 6 |
|
dfsn2 |
|
| 7 |
6
|
eqeq2i |
|
| 8 |
3 5 7
|
3bitr3i |
|
| 9 |
8
|
a1i |
|
| 10 |
|
preq2 |
|
| 11 |
10
|
fneq2d |
|
| 12 |
|
id |
|
| 13 |
|
fveq2 |
|
| 14 |
12 13
|
opeq12d |
|
| 15 |
14
|
preq2d |
|
| 16 |
15
|
eqeq2d |
|
| 17 |
9 11 16
|
3bitr3d |
|
| 18 |
|
fndm |
|
| 19 |
|
fvex |
|
| 20 |
|
fvex |
|
| 21 |
19 20
|
dmprop |
|
| 22 |
18 21
|
eqtr4di |
|
| 23 |
22
|
adantl |
|
| 24 |
18
|
adantl |
|
| 25 |
24
|
eleq2d |
|
| 26 |
|
vex |
|
| 27 |
26
|
elpr |
|
| 28 |
1 19
|
fvpr1 |
|
| 29 |
28
|
adantr |
|
| 30 |
29
|
eqcomd |
|
| 31 |
|
fveq2 |
|
| 32 |
|
fveq2 |
|
| 33 |
31 32
|
eqeq12d |
|
| 34 |
30 33
|
syl5ibrcom |
|
| 35 |
2 20
|
fvpr2 |
|
| 36 |
35
|
adantr |
|
| 37 |
36
|
eqcomd |
|
| 38 |
|
fveq2 |
|
| 39 |
|
fveq2 |
|
| 40 |
38 39
|
eqeq12d |
|
| 41 |
37 40
|
syl5ibrcom |
|
| 42 |
34 41
|
jaod |
|
| 43 |
27 42
|
biimtrid |
|
| 44 |
25 43
|
sylbid |
|
| 45 |
44
|
ralrimiv |
|
| 46 |
|
fnfun |
|
| 47 |
1 2 19 20
|
funpr |
|
| 48 |
|
eqfunfv |
|
| 49 |
46 47 48
|
syl2anr |
|
| 50 |
23 45 49
|
mpbir2and |
|
| 51 |
|
df-fn |
|
| 52 |
47 21 51
|
sylanblrc |
|
| 53 |
|
fneq1 |
|
| 54 |
53
|
biimprd |
|
| 55 |
52 54
|
mpan9 |
|
| 56 |
50 55
|
impbida |
|
| 57 |
17 56
|
pm2.61ine |
|