Metamath Proof Explorer


Theorem fvpr1

Description: The value of a function with a domain of two elements. (Contributed by Jeff Madsen, 20-Jun-2010) (Proof shortened by BJ, 26-Sep-2024)

Ref Expression
Hypotheses fvpr1.1 A V
fvpr1.2 C V
Assertion fvpr1 A B A C B D A = C

Proof

Step Hyp Ref Expression
1 fvpr1.1 A V
2 fvpr1.2 C V
3 fvpr1g A V C V A B A C B D A = C
4 1 2 3 mp3an12 A B A C B D A = C