Metamath Proof Explorer


Theorem fvpr1g

Description: The value of a function with a domain of (at most) two elements. (Contributed by Alexander van der Vekens, 3-Dec-2017)

Ref Expression
Assertion fvpr1g A V C W A B A C B D A = C

Proof

Step Hyp Ref Expression
1 df-pr A C B D = A C B D
2 1 fveq1i A C B D A = A C B D A
3 necom A B B A
4 fvunsn B A A C B D A = A C A
5 3 4 sylbi A B A C B D A = A C A
6 2 5 syl5eq A B A C B D A = A C A
7 6 3ad2ant3 A V C W A B A C B D A = A C A
8 fvsng A V C W A C A = C
9 8 3adant3 A V C W A B A C A = C
10 7 9 eqtrd A V C W A B A C B D A = C