Step |
Hyp |
Ref |
Expression |
1 |
|
df-pr |
|- { <. A , C >. , <. B , D >. } = ( { <. A , C >. } u. { <. B , D >. } ) |
2 |
1
|
fveq1i |
|- ( { <. A , C >. , <. B , D >. } ` A ) = ( ( { <. A , C >. } u. { <. B , D >. } ) ` A ) |
3 |
|
necom |
|- ( A =/= B <-> B =/= A ) |
4 |
|
fvunsn |
|- ( B =/= A -> ( ( { <. A , C >. } u. { <. B , D >. } ) ` A ) = ( { <. A , C >. } ` A ) ) |
5 |
3 4
|
sylbi |
|- ( A =/= B -> ( ( { <. A , C >. } u. { <. B , D >. } ) ` A ) = ( { <. A , C >. } ` A ) ) |
6 |
2 5
|
syl5eq |
|- ( A =/= B -> ( { <. A , C >. , <. B , D >. } ` A ) = ( { <. A , C >. } ` A ) ) |
7 |
6
|
3ad2ant3 |
|- ( ( A e. V /\ C e. W /\ A =/= B ) -> ( { <. A , C >. , <. B , D >. } ` A ) = ( { <. A , C >. } ` A ) ) |
8 |
|
fvsng |
|- ( ( A e. V /\ C e. W ) -> ( { <. A , C >. } ` A ) = C ) |
9 |
8
|
3adant3 |
|- ( ( A e. V /\ C e. W /\ A =/= B ) -> ( { <. A , C >. } ` A ) = C ) |
10 |
7 9
|
eqtrd |
|- ( ( A e. V /\ C e. W /\ A =/= B ) -> ( { <. A , C >. , <. B , D >. } ` A ) = C ) |