Metamath Proof Explorer


Theorem fvunsn

Description: Remove an ordered pair not participating in a function value. (Contributed by NM, 1-Oct-2013) (Revised by Mario Carneiro, 28-May-2014)

Ref Expression
Assertion fvunsn BDABCD=AD

Proof

Step Hyp Ref Expression
1 resundir ABCD=ADBCD
2 nelsn BD¬BD
3 ressnop0 ¬BDBCD=
4 2 3 syl BDBCD=
5 4 uneq2d BDADBCD=AD
6 un0 AD=AD
7 5 6 eqtrdi BDADBCD=AD
8 1 7 eqtrid BDABCD=AD
9 8 fveq1d BDABCDD=ADD
10 fvressn DVABCDD=ABCD
11 fvprc ¬DVABCDD=
12 fvprc ¬DVABCD=
13 11 12 eqtr4d ¬DVABCDD=ABCD
14 10 13 pm2.61i ABCDD=ABCD
15 fvressn DVADD=AD
16 fvprc ¬DVADD=
17 fvprc ¬DVAD=
18 16 17 eqtr4d ¬DVADD=AD
19 15 18 pm2.61i ADD=AD
20 9 14 19 3eqtr3g BDABCD=AD