Metamath Proof Explorer


Theorem fvpr2g

Description: The value of a function with a domain of (at most) two elements. (Contributed by Alexander van der Vekens, 3-Dec-2017) (Proof shortened by BJ, 26-Sep-2024)

Ref Expression
Assertion fvpr2g B V D W A B A C B D B = D

Proof

Step Hyp Ref Expression
1 prcom A C B D = B D A C
2 1 fveq1i A C B D B = B D A C B
3 necom A B B A
4 fvpr1g B V D W B A B D A C B = D
5 3 4 syl3an3b B V D W A B B D A C B = D
6 2 5 syl5eq B V D W A B A C B D B = D