Metamath Proof Explorer


Theorem fvpr2gOLD

Description: Obsolete version of fvpr2g as of 26-Sep-2024. (Contributed by Alexander van der Vekens, 3-Dec-2017) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion fvpr2gOLD BVDWABACBDB=D

Proof

Step Hyp Ref Expression
1 prcom ACBD=BDAC
2 df-pr BDAC=BDAC
3 1 2 eqtri ACBD=BDAC
4 3 fveq1i ACBDB=BDACB
5 fvunsn ABBDACB=BDB
6 4 5 eqtrid ABACBDB=BDB
7 6 3ad2ant3 BVDWABACBDB=BDB
8 fvsng BVDWBDB=D
9 8 3adant3 BVDWABBDB=D
10 7 9 eqtrd BVDWABACBDB=D