Step |
Hyp |
Ref |
Expression |
1 |
|
prcom |
|- { <. A , C >. , <. B , D >. } = { <. B , D >. , <. A , C >. } |
2 |
|
df-pr |
|- { <. B , D >. , <. A , C >. } = ( { <. B , D >. } u. { <. A , C >. } ) |
3 |
1 2
|
eqtri |
|- { <. A , C >. , <. B , D >. } = ( { <. B , D >. } u. { <. A , C >. } ) |
4 |
3
|
fveq1i |
|- ( { <. A , C >. , <. B , D >. } ` B ) = ( ( { <. B , D >. } u. { <. A , C >. } ) ` B ) |
5 |
|
fvunsn |
|- ( A =/= B -> ( ( { <. B , D >. } u. { <. A , C >. } ) ` B ) = ( { <. B , D >. } ` B ) ) |
6 |
4 5
|
syl5eq |
|- ( A =/= B -> ( { <. A , C >. , <. B , D >. } ` B ) = ( { <. B , D >. } ` B ) ) |
7 |
6
|
3ad2ant3 |
|- ( ( B e. V /\ D e. W /\ A =/= B ) -> ( { <. A , C >. , <. B , D >. } ` B ) = ( { <. B , D >. } ` B ) ) |
8 |
|
fvsng |
|- ( ( B e. V /\ D e. W ) -> ( { <. B , D >. } ` B ) = D ) |
9 |
8
|
3adant3 |
|- ( ( B e. V /\ D e. W /\ A =/= B ) -> ( { <. B , D >. } ` B ) = D ) |
10 |
7 9
|
eqtrd |
|- ( ( B e. V /\ D e. W /\ A =/= B ) -> ( { <. A , C >. , <. B , D >. } ` B ) = D ) |