Metamath Proof Explorer


Theorem fvpr1

Description: The value of a function with a domain of two elements. (Contributed by Jeff Madsen, 20-Jun-2010) (Proof shortened by BJ, 26-Sep-2024)

Ref Expression
Hypotheses fvpr1.1
|- A e. _V
fvpr1.2
|- C e. _V
Assertion fvpr1
|- ( A =/= B -> ( { <. A , C >. , <. B , D >. } ` A ) = C )

Proof

Step Hyp Ref Expression
1 fvpr1.1
 |-  A e. _V
2 fvpr1.2
 |-  C e. _V
3 fvpr1g
 |-  ( ( A e. _V /\ C e. _V /\ A =/= B ) -> ( { <. A , C >. , <. B , D >. } ` A ) = C )
4 1 2 3 mp3an12
 |-  ( A =/= B -> ( { <. A , C >. , <. B , D >. } ` A ) = C )