Metamath Proof Explorer


Theorem fvpr1

Description: The value of a function with a domain of two elements. (Contributed by Jeff Madsen, 20-Jun-2010) (Proof shortened by BJ, 26-Sep-2024)

Ref Expression
Hypotheses fvpr1.1 𝐴 ∈ V
fvpr1.2 𝐶 ∈ V
Assertion fvpr1 ( 𝐴𝐵 → ( { ⟨ 𝐴 , 𝐶 ⟩ , ⟨ 𝐵 , 𝐷 ⟩ } ‘ 𝐴 ) = 𝐶 )

Proof

Step Hyp Ref Expression
1 fvpr1.1 𝐴 ∈ V
2 fvpr1.2 𝐶 ∈ V
3 fvpr1g ( ( 𝐴 ∈ V ∧ 𝐶 ∈ V ∧ 𝐴𝐵 ) → ( { ⟨ 𝐴 , 𝐶 ⟩ , ⟨ 𝐵 , 𝐷 ⟩ } ‘ 𝐴 ) = 𝐶 )
4 1 2 3 mp3an12 ( 𝐴𝐵 → ( { ⟨ 𝐴 , 𝐶 ⟩ , ⟨ 𝐵 , 𝐷 ⟩ } ‘ 𝐴 ) = 𝐶 )