Metamath Proof Explorer


Theorem fvpr1

Description: The value of a function with a domain of two elements. (Contributed by Jeff Madsen, 20-Jun-2010)

Ref Expression
Hypotheses fvpr1.1 𝐴 ∈ V
fvpr1.2 𝐶 ∈ V
Assertion fvpr1 ( 𝐴𝐵 → ( { ⟨ 𝐴 , 𝐶 ⟩ , ⟨ 𝐵 , 𝐷 ⟩ } ‘ 𝐴 ) = 𝐶 )

Proof

Step Hyp Ref Expression
1 fvpr1.1 𝐴 ∈ V
2 fvpr1.2 𝐶 ∈ V
3 df-pr { ⟨ 𝐴 , 𝐶 ⟩ , ⟨ 𝐵 , 𝐷 ⟩ } = ( { ⟨ 𝐴 , 𝐶 ⟩ } ∪ { ⟨ 𝐵 , 𝐷 ⟩ } )
4 3 fveq1i ( { ⟨ 𝐴 , 𝐶 ⟩ , ⟨ 𝐵 , 𝐷 ⟩ } ‘ 𝐴 ) = ( ( { ⟨ 𝐴 , 𝐶 ⟩ } ∪ { ⟨ 𝐵 , 𝐷 ⟩ } ) ‘ 𝐴 )
5 necom ( 𝐴𝐵𝐵𝐴 )
6 fvunsn ( 𝐵𝐴 → ( ( { ⟨ 𝐴 , 𝐶 ⟩ } ∪ { ⟨ 𝐵 , 𝐷 ⟩ } ) ‘ 𝐴 ) = ( { ⟨ 𝐴 , 𝐶 ⟩ } ‘ 𝐴 ) )
7 5 6 sylbi ( 𝐴𝐵 → ( ( { ⟨ 𝐴 , 𝐶 ⟩ } ∪ { ⟨ 𝐵 , 𝐷 ⟩ } ) ‘ 𝐴 ) = ( { ⟨ 𝐴 , 𝐶 ⟩ } ‘ 𝐴 ) )
8 4 7 eqtrid ( 𝐴𝐵 → ( { ⟨ 𝐴 , 𝐶 ⟩ , ⟨ 𝐵 , 𝐷 ⟩ } ‘ 𝐴 ) = ( { ⟨ 𝐴 , 𝐶 ⟩ } ‘ 𝐴 ) )
9 1 2 fvsn ( { ⟨ 𝐴 , 𝐶 ⟩ } ‘ 𝐴 ) = 𝐶
10 8 9 eqtrdi ( 𝐴𝐵 → ( { ⟨ 𝐴 , 𝐶 ⟩ , ⟨ 𝐵 , 𝐷 ⟩ } ‘ 𝐴 ) = 𝐶 )