Metamath Proof Explorer


Theorem fvpr1OLD

Description: Obsolete version of fvpr1 as of 26-Sep-2024. (Contributed by Jeff Madsen, 20-Jun-2010) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses fvpr1.1 A V
fvpr1.2 C V
Assertion fvpr1OLD A B A C B D A = C

Proof

Step Hyp Ref Expression
1 fvpr1.1 A V
2 fvpr1.2 C V
3 df-pr A C B D = A C B D
4 3 fveq1i A C B D A = A C B D A
5 necom A B B A
6 fvunsn B A A C B D A = A C A
7 5 6 sylbi A B A C B D A = A C A
8 4 7 syl5eq A B A C B D A = A C A
9 1 2 fvsn A C A = C
10 8 9 eqtrdi A B A C B D A = C