Metamath Proof Explorer


Theorem syl5eq

Description: An equality transitivity deduction. (Contributed by NM, 21-Jun-1993)

Ref Expression
Hypotheses syl5eq.1 A = B
syl5eq.2 φ B = C
Assertion syl5eq φ A = C

Proof

Step Hyp Ref Expression
1 syl5eq.1 A = B
2 syl5eq.2 φ B = C
3 1 a1i φ A = B
4 3 2 eqtrd φ A = C