Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - start with the Axiom of Extensionality
Classes
Class equality
syl5eq
Next ⟩
syl5req
Metamath Proof Explorer
Ascii
Unicode
Theorem
syl5eq
Description:
An equality transitivity deduction.
(Contributed by
NM
, 21-Jun-1993)
Ref
Expression
Hypotheses
syl5eq.1
⊢
A
=
B
syl5eq.2
⊢
φ
→
B
=
C
Assertion
syl5eq
⊢
φ
→
A
=
C
Proof
Step
Hyp
Ref
Expression
1
syl5eq.1
⊢
A
=
B
2
syl5eq.2
⊢
φ
→
B
=
C
3
1
a1i
⊢
φ
→
A
=
B
4
3
2
eqtrd
⊢
φ
→
A
=
C