Metamath Proof Explorer


Theorem fntpb

Description: A function whose domain has at most three elements can be represented as a set of at most three ordered pairs. (Contributed by AV, 26-Jan-2021)

Ref Expression
Hypotheses fnprb.a AV
fnprb.b BV
fntpb.c CV
Assertion fntpb FFnABCF=AFABFBCFC

Proof

Step Hyp Ref Expression
1 fnprb.a AV
2 fnprb.b BV
3 fntpb.c CV
4 1 2 fnprb FFnABF=AFABFB
5 tpidm23 ABB=AB
6 5 eqcomi AB=ABB
7 6 fneq2i FFnABFFnABB
8 tpidm23 AFABFBBFB=AFABFB
9 8 eqcomi AFABFB=AFABFBBFB
10 9 eqeq2i F=AFABFBF=AFABFBBFB
11 4 7 10 3bitr3i FFnABBF=AFABFBBFB
12 11 a1i B=CFFnABBF=AFABFBBFB
13 tpeq3 B=CABB=ABC
14 13 fneq2d B=CFFnABBFFnABC
15 id B=CB=C
16 fveq2 B=CFB=FC
17 15 16 opeq12d B=CBFB=CFC
18 17 tpeq3d B=CAFABFBBFB=AFABFBCFC
19 18 eqeq2d B=CF=AFABFBBFBF=AFABFBCFC
20 12 14 19 3bitr3d B=CFFnABCF=AFABFBCFC
21 20 a1d B=CABACFFnABCF=AFABFBCFC
22 fndm FFnABCdomF=ABC
23 fvex FAV
24 fvex FBV
25 fvex FCV
26 23 24 25 dmtpop domAFABFBCFC=ABC
27 22 26 eqtr4di FFnABCdomF=domAFABFBCFC
28 27 adantl ABACBCFFnABCdomF=domAFABFBCFC
29 22 adantl ABACBCFFnABCdomF=ABC
30 29 eleq2d ABACBCFFnABCxdomFxABC
31 vex xV
32 31 eltp xABCx=Ax=Bx=C
33 1 23 fvtp1 ABACAFABFBCFCA=FA
34 33 ad2antrr ABACBCFFnABCAFABFBCFCA=FA
35 34 eqcomd ABACBCFFnABCFA=AFABFBCFCA
36 fveq2 x=AFx=FA
37 fveq2 x=AAFABFBCFCx=AFABFBCFCA
38 36 37 eqeq12d x=AFx=AFABFBCFCxFA=AFABFBCFCA
39 35 38 syl5ibrcom ABACBCFFnABCx=AFx=AFABFBCFCx
40 2 24 fvtp2 ABBCAFABFBCFCB=FB
41 40 ad4ant13 ABACBCFFnABCAFABFBCFCB=FB
42 41 eqcomd ABACBCFFnABCFB=AFABFBCFCB
43 fveq2 x=BFx=FB
44 fveq2 x=BAFABFBCFCx=AFABFBCFCB
45 43 44 eqeq12d x=BFx=AFABFBCFCxFB=AFABFBCFCB
46 42 45 syl5ibrcom ABACBCFFnABCx=BFx=AFABFBCFCx
47 3 25 fvtp3 ACBCAFABFBCFCC=FC
48 47 ad4ant23 ABACBCFFnABCAFABFBCFCC=FC
49 48 eqcomd ABACBCFFnABCFC=AFABFBCFCC
50 fveq2 x=CFx=FC
51 fveq2 x=CAFABFBCFCx=AFABFBCFCC
52 50 51 eqeq12d x=CFx=AFABFBCFCxFC=AFABFBCFCC
53 49 52 syl5ibrcom ABACBCFFnABCx=CFx=AFABFBCFCx
54 39 46 53 3jaod ABACBCFFnABCx=Ax=Bx=CFx=AFABFBCFCx
55 32 54 biimtrid ABACBCFFnABCxABCFx=AFABFBCFCx
56 30 55 sylbid ABACBCFFnABCxdomFFx=AFABFBCFCx
57 56 ralrimiv ABACBCFFnABCxdomFFx=AFABFBCFCx
58 fnfun FFnABCFunF
59 1 2 3 23 24 25 funtp ABACBCFunAFABFBCFC
60 59 3expa ABACBCFunAFABFBCFC
61 eqfunfv FunFFunAFABFBCFCF=AFABFBCFCdomF=domAFABFBCFCxdomFFx=AFABFBCFCx
62 58 60 61 syl2anr ABACBCFFnABCF=AFABFBCFCdomF=domAFABFBCFCxdomFFx=AFABFBCFCx
63 28 57 62 mpbir2and ABACBCFFnABCF=AFABFBCFC
64 1 2 3 23 24 25 fntp ABACBCAFABFBCFCFnABC
65 64 3expa ABACBCAFABFBCFCFnABC
66 fneq1 F=AFABFBCFCFFnABCAFABFBCFCFnABC
67 66 biimprd F=AFABFBCFCAFABFBCFCFnABCFFnABC
68 65 67 mpan9 ABACBCF=AFABFBCFCFFnABC
69 63 68 impbida ABACBCFFnABCF=AFABFBCFC
70 69 expcom BCABACFFnABCF=AFABFBCFC
71 21 70 pm2.61ine ABACFFnABCF=AFABFBCFC
72 1 3 fnprb FFnACF=AFACFC
73 tpidm12 AAC=AC
74 73 eqcomi AC=AAC
75 74 fneq2i FFnACFFnAAC
76 tpidm12 AFAAFACFC=AFACFC
77 76 eqcomi AFACFC=AFAAFACFC
78 77 eqeq2i F=AFACFCF=AFAAFACFC
79 72 75 78 3bitr3i FFnAACF=AFAAFACFC
80 79 a1i A=BFFnAACF=AFAAFACFC
81 tpeq2 A=BAAC=ABC
82 81 fneq2d A=BFFnAACFFnABC
83 id A=BA=B
84 fveq2 A=BFA=FB
85 83 84 opeq12d A=BAFA=BFB
86 85 tpeq2d A=BAFAAFACFC=AFABFBCFC
87 86 eqeq2d A=BF=AFAAFACFCF=AFABFBCFC
88 80 82 87 3bitr3d A=BFFnABCF=AFABFBCFC
89 tpidm13 ABA=AB
90 89 eqcomi AB=ABA
91 90 fneq2i FFnABFFnABA
92 tpidm13 AFABFBAFA=AFABFB
93 92 eqcomi AFABFB=AFABFBAFA
94 93 eqeq2i F=AFABFBF=AFABFBAFA
95 4 91 94 3bitr3i FFnABAF=AFABFBAFA
96 95 a1i A=CFFnABAF=AFABFBAFA
97 tpeq3 A=CABA=ABC
98 97 fneq2d A=CFFnABAFFnABC
99 id A=CA=C
100 fveq2 A=CFA=FC
101 99 100 opeq12d A=CAFA=CFC
102 101 tpeq3d A=CAFABFBAFA=AFABFBCFC
103 102 eqeq2d A=CF=AFABFBAFAF=AFABFBCFC
104 96 98 103 3bitr3d A=CFFnABCF=AFABFBCFC
105 71 88 104 pm2.61iine FFnABCF=AFABFBCFC