| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fnprb.a |
|- A e. _V |
| 2 |
|
fnprb.b |
|- B e. _V |
| 3 |
|
fntpb.c |
|- C e. _V |
| 4 |
1 2
|
fnprb |
|- ( F Fn { A , B } <-> F = { <. A , ( F ` A ) >. , <. B , ( F ` B ) >. } ) |
| 5 |
|
tpidm23 |
|- { A , B , B } = { A , B } |
| 6 |
5
|
eqcomi |
|- { A , B } = { A , B , B } |
| 7 |
6
|
fneq2i |
|- ( F Fn { A , B } <-> F Fn { A , B , B } ) |
| 8 |
|
tpidm23 |
|- { <. A , ( F ` A ) >. , <. B , ( F ` B ) >. , <. B , ( F ` B ) >. } = { <. A , ( F ` A ) >. , <. B , ( F ` B ) >. } |
| 9 |
8
|
eqcomi |
|- { <. A , ( F ` A ) >. , <. B , ( F ` B ) >. } = { <. A , ( F ` A ) >. , <. B , ( F ` B ) >. , <. B , ( F ` B ) >. } |
| 10 |
9
|
eqeq2i |
|- ( F = { <. A , ( F ` A ) >. , <. B , ( F ` B ) >. } <-> F = { <. A , ( F ` A ) >. , <. B , ( F ` B ) >. , <. B , ( F ` B ) >. } ) |
| 11 |
4 7 10
|
3bitr3i |
|- ( F Fn { A , B , B } <-> F = { <. A , ( F ` A ) >. , <. B , ( F ` B ) >. , <. B , ( F ` B ) >. } ) |
| 12 |
11
|
a1i |
|- ( B = C -> ( F Fn { A , B , B } <-> F = { <. A , ( F ` A ) >. , <. B , ( F ` B ) >. , <. B , ( F ` B ) >. } ) ) |
| 13 |
|
tpeq3 |
|- ( B = C -> { A , B , B } = { A , B , C } ) |
| 14 |
13
|
fneq2d |
|- ( B = C -> ( F Fn { A , B , B } <-> F Fn { A , B , C } ) ) |
| 15 |
|
id |
|- ( B = C -> B = C ) |
| 16 |
|
fveq2 |
|- ( B = C -> ( F ` B ) = ( F ` C ) ) |
| 17 |
15 16
|
opeq12d |
|- ( B = C -> <. B , ( F ` B ) >. = <. C , ( F ` C ) >. ) |
| 18 |
17
|
tpeq3d |
|- ( B = C -> { <. A , ( F ` A ) >. , <. B , ( F ` B ) >. , <. B , ( F ` B ) >. } = { <. A , ( F ` A ) >. , <. B , ( F ` B ) >. , <. C , ( F ` C ) >. } ) |
| 19 |
18
|
eqeq2d |
|- ( B = C -> ( F = { <. A , ( F ` A ) >. , <. B , ( F ` B ) >. , <. B , ( F ` B ) >. } <-> F = { <. A , ( F ` A ) >. , <. B , ( F ` B ) >. , <. C , ( F ` C ) >. } ) ) |
| 20 |
12 14 19
|
3bitr3d |
|- ( B = C -> ( F Fn { A , B , C } <-> F = { <. A , ( F ` A ) >. , <. B , ( F ` B ) >. , <. C , ( F ` C ) >. } ) ) |
| 21 |
20
|
a1d |
|- ( B = C -> ( ( A =/= B /\ A =/= C ) -> ( F Fn { A , B , C } <-> F = { <. A , ( F ` A ) >. , <. B , ( F ` B ) >. , <. C , ( F ` C ) >. } ) ) ) |
| 22 |
|
fndm |
|- ( F Fn { A , B , C } -> dom F = { A , B , C } ) |
| 23 |
|
fvex |
|- ( F ` A ) e. _V |
| 24 |
|
fvex |
|- ( F ` B ) e. _V |
| 25 |
|
fvex |
|- ( F ` C ) e. _V |
| 26 |
23 24 25
|
dmtpop |
|- dom { <. A , ( F ` A ) >. , <. B , ( F ` B ) >. , <. C , ( F ` C ) >. } = { A , B , C } |
| 27 |
22 26
|
eqtr4di |
|- ( F Fn { A , B , C } -> dom F = dom { <. A , ( F ` A ) >. , <. B , ( F ` B ) >. , <. C , ( F ` C ) >. } ) |
| 28 |
27
|
adantl |
|- ( ( ( ( A =/= B /\ A =/= C ) /\ B =/= C ) /\ F Fn { A , B , C } ) -> dom F = dom { <. A , ( F ` A ) >. , <. B , ( F ` B ) >. , <. C , ( F ` C ) >. } ) |
| 29 |
22
|
adantl |
|- ( ( ( ( A =/= B /\ A =/= C ) /\ B =/= C ) /\ F Fn { A , B , C } ) -> dom F = { A , B , C } ) |
| 30 |
29
|
eleq2d |
|- ( ( ( ( A =/= B /\ A =/= C ) /\ B =/= C ) /\ F Fn { A , B , C } ) -> ( x e. dom F <-> x e. { A , B , C } ) ) |
| 31 |
|
vex |
|- x e. _V |
| 32 |
31
|
eltp |
|- ( x e. { A , B , C } <-> ( x = A \/ x = B \/ x = C ) ) |
| 33 |
1 23
|
fvtp1 |
|- ( ( A =/= B /\ A =/= C ) -> ( { <. A , ( F ` A ) >. , <. B , ( F ` B ) >. , <. C , ( F ` C ) >. } ` A ) = ( F ` A ) ) |
| 34 |
33
|
ad2antrr |
|- ( ( ( ( A =/= B /\ A =/= C ) /\ B =/= C ) /\ F Fn { A , B , C } ) -> ( { <. A , ( F ` A ) >. , <. B , ( F ` B ) >. , <. C , ( F ` C ) >. } ` A ) = ( F ` A ) ) |
| 35 |
34
|
eqcomd |
|- ( ( ( ( A =/= B /\ A =/= C ) /\ B =/= C ) /\ F Fn { A , B , C } ) -> ( F ` A ) = ( { <. A , ( F ` A ) >. , <. B , ( F ` B ) >. , <. C , ( F ` C ) >. } ` A ) ) |
| 36 |
|
fveq2 |
|- ( x = A -> ( F ` x ) = ( F ` A ) ) |
| 37 |
|
fveq2 |
|- ( x = A -> ( { <. A , ( F ` A ) >. , <. B , ( F ` B ) >. , <. C , ( F ` C ) >. } ` x ) = ( { <. A , ( F ` A ) >. , <. B , ( F ` B ) >. , <. C , ( F ` C ) >. } ` A ) ) |
| 38 |
36 37
|
eqeq12d |
|- ( x = A -> ( ( F ` x ) = ( { <. A , ( F ` A ) >. , <. B , ( F ` B ) >. , <. C , ( F ` C ) >. } ` x ) <-> ( F ` A ) = ( { <. A , ( F ` A ) >. , <. B , ( F ` B ) >. , <. C , ( F ` C ) >. } ` A ) ) ) |
| 39 |
35 38
|
syl5ibrcom |
|- ( ( ( ( A =/= B /\ A =/= C ) /\ B =/= C ) /\ F Fn { A , B , C } ) -> ( x = A -> ( F ` x ) = ( { <. A , ( F ` A ) >. , <. B , ( F ` B ) >. , <. C , ( F ` C ) >. } ` x ) ) ) |
| 40 |
2 24
|
fvtp2 |
|- ( ( A =/= B /\ B =/= C ) -> ( { <. A , ( F ` A ) >. , <. B , ( F ` B ) >. , <. C , ( F ` C ) >. } ` B ) = ( F ` B ) ) |
| 41 |
40
|
ad4ant13 |
|- ( ( ( ( A =/= B /\ A =/= C ) /\ B =/= C ) /\ F Fn { A , B , C } ) -> ( { <. A , ( F ` A ) >. , <. B , ( F ` B ) >. , <. C , ( F ` C ) >. } ` B ) = ( F ` B ) ) |
| 42 |
41
|
eqcomd |
|- ( ( ( ( A =/= B /\ A =/= C ) /\ B =/= C ) /\ F Fn { A , B , C } ) -> ( F ` B ) = ( { <. A , ( F ` A ) >. , <. B , ( F ` B ) >. , <. C , ( F ` C ) >. } ` B ) ) |
| 43 |
|
fveq2 |
|- ( x = B -> ( F ` x ) = ( F ` B ) ) |
| 44 |
|
fveq2 |
|- ( x = B -> ( { <. A , ( F ` A ) >. , <. B , ( F ` B ) >. , <. C , ( F ` C ) >. } ` x ) = ( { <. A , ( F ` A ) >. , <. B , ( F ` B ) >. , <. C , ( F ` C ) >. } ` B ) ) |
| 45 |
43 44
|
eqeq12d |
|- ( x = B -> ( ( F ` x ) = ( { <. A , ( F ` A ) >. , <. B , ( F ` B ) >. , <. C , ( F ` C ) >. } ` x ) <-> ( F ` B ) = ( { <. A , ( F ` A ) >. , <. B , ( F ` B ) >. , <. C , ( F ` C ) >. } ` B ) ) ) |
| 46 |
42 45
|
syl5ibrcom |
|- ( ( ( ( A =/= B /\ A =/= C ) /\ B =/= C ) /\ F Fn { A , B , C } ) -> ( x = B -> ( F ` x ) = ( { <. A , ( F ` A ) >. , <. B , ( F ` B ) >. , <. C , ( F ` C ) >. } ` x ) ) ) |
| 47 |
3 25
|
fvtp3 |
|- ( ( A =/= C /\ B =/= C ) -> ( { <. A , ( F ` A ) >. , <. B , ( F ` B ) >. , <. C , ( F ` C ) >. } ` C ) = ( F ` C ) ) |
| 48 |
47
|
ad4ant23 |
|- ( ( ( ( A =/= B /\ A =/= C ) /\ B =/= C ) /\ F Fn { A , B , C } ) -> ( { <. A , ( F ` A ) >. , <. B , ( F ` B ) >. , <. C , ( F ` C ) >. } ` C ) = ( F ` C ) ) |
| 49 |
48
|
eqcomd |
|- ( ( ( ( A =/= B /\ A =/= C ) /\ B =/= C ) /\ F Fn { A , B , C } ) -> ( F ` C ) = ( { <. A , ( F ` A ) >. , <. B , ( F ` B ) >. , <. C , ( F ` C ) >. } ` C ) ) |
| 50 |
|
fveq2 |
|- ( x = C -> ( F ` x ) = ( F ` C ) ) |
| 51 |
|
fveq2 |
|- ( x = C -> ( { <. A , ( F ` A ) >. , <. B , ( F ` B ) >. , <. C , ( F ` C ) >. } ` x ) = ( { <. A , ( F ` A ) >. , <. B , ( F ` B ) >. , <. C , ( F ` C ) >. } ` C ) ) |
| 52 |
50 51
|
eqeq12d |
|- ( x = C -> ( ( F ` x ) = ( { <. A , ( F ` A ) >. , <. B , ( F ` B ) >. , <. C , ( F ` C ) >. } ` x ) <-> ( F ` C ) = ( { <. A , ( F ` A ) >. , <. B , ( F ` B ) >. , <. C , ( F ` C ) >. } ` C ) ) ) |
| 53 |
49 52
|
syl5ibrcom |
|- ( ( ( ( A =/= B /\ A =/= C ) /\ B =/= C ) /\ F Fn { A , B , C } ) -> ( x = C -> ( F ` x ) = ( { <. A , ( F ` A ) >. , <. B , ( F ` B ) >. , <. C , ( F ` C ) >. } ` x ) ) ) |
| 54 |
39 46 53
|
3jaod |
|- ( ( ( ( A =/= B /\ A =/= C ) /\ B =/= C ) /\ F Fn { A , B , C } ) -> ( ( x = A \/ x = B \/ x = C ) -> ( F ` x ) = ( { <. A , ( F ` A ) >. , <. B , ( F ` B ) >. , <. C , ( F ` C ) >. } ` x ) ) ) |
| 55 |
32 54
|
biimtrid |
|- ( ( ( ( A =/= B /\ A =/= C ) /\ B =/= C ) /\ F Fn { A , B , C } ) -> ( x e. { A , B , C } -> ( F ` x ) = ( { <. A , ( F ` A ) >. , <. B , ( F ` B ) >. , <. C , ( F ` C ) >. } ` x ) ) ) |
| 56 |
30 55
|
sylbid |
|- ( ( ( ( A =/= B /\ A =/= C ) /\ B =/= C ) /\ F Fn { A , B , C } ) -> ( x e. dom F -> ( F ` x ) = ( { <. A , ( F ` A ) >. , <. B , ( F ` B ) >. , <. C , ( F ` C ) >. } ` x ) ) ) |
| 57 |
56
|
ralrimiv |
|- ( ( ( ( A =/= B /\ A =/= C ) /\ B =/= C ) /\ F Fn { A , B , C } ) -> A. x e. dom F ( F ` x ) = ( { <. A , ( F ` A ) >. , <. B , ( F ` B ) >. , <. C , ( F ` C ) >. } ` x ) ) |
| 58 |
|
fnfun |
|- ( F Fn { A , B , C } -> Fun F ) |
| 59 |
1 2 3 23 24 25
|
funtp |
|- ( ( A =/= B /\ A =/= C /\ B =/= C ) -> Fun { <. A , ( F ` A ) >. , <. B , ( F ` B ) >. , <. C , ( F ` C ) >. } ) |
| 60 |
59
|
3expa |
|- ( ( ( A =/= B /\ A =/= C ) /\ B =/= C ) -> Fun { <. A , ( F ` A ) >. , <. B , ( F ` B ) >. , <. C , ( F ` C ) >. } ) |
| 61 |
|
eqfunfv |
|- ( ( Fun F /\ Fun { <. A , ( F ` A ) >. , <. B , ( F ` B ) >. , <. C , ( F ` C ) >. } ) -> ( F = { <. A , ( F ` A ) >. , <. B , ( F ` B ) >. , <. C , ( F ` C ) >. } <-> ( dom F = dom { <. A , ( F ` A ) >. , <. B , ( F ` B ) >. , <. C , ( F ` C ) >. } /\ A. x e. dom F ( F ` x ) = ( { <. A , ( F ` A ) >. , <. B , ( F ` B ) >. , <. C , ( F ` C ) >. } ` x ) ) ) ) |
| 62 |
58 60 61
|
syl2anr |
|- ( ( ( ( A =/= B /\ A =/= C ) /\ B =/= C ) /\ F Fn { A , B , C } ) -> ( F = { <. A , ( F ` A ) >. , <. B , ( F ` B ) >. , <. C , ( F ` C ) >. } <-> ( dom F = dom { <. A , ( F ` A ) >. , <. B , ( F ` B ) >. , <. C , ( F ` C ) >. } /\ A. x e. dom F ( F ` x ) = ( { <. A , ( F ` A ) >. , <. B , ( F ` B ) >. , <. C , ( F ` C ) >. } ` x ) ) ) ) |
| 63 |
28 57 62
|
mpbir2and |
|- ( ( ( ( A =/= B /\ A =/= C ) /\ B =/= C ) /\ F Fn { A , B , C } ) -> F = { <. A , ( F ` A ) >. , <. B , ( F ` B ) >. , <. C , ( F ` C ) >. } ) |
| 64 |
1 2 3 23 24 25
|
fntp |
|- ( ( A =/= B /\ A =/= C /\ B =/= C ) -> { <. A , ( F ` A ) >. , <. B , ( F ` B ) >. , <. C , ( F ` C ) >. } Fn { A , B , C } ) |
| 65 |
64
|
3expa |
|- ( ( ( A =/= B /\ A =/= C ) /\ B =/= C ) -> { <. A , ( F ` A ) >. , <. B , ( F ` B ) >. , <. C , ( F ` C ) >. } Fn { A , B , C } ) |
| 66 |
|
fneq1 |
|- ( F = { <. A , ( F ` A ) >. , <. B , ( F ` B ) >. , <. C , ( F ` C ) >. } -> ( F Fn { A , B , C } <-> { <. A , ( F ` A ) >. , <. B , ( F ` B ) >. , <. C , ( F ` C ) >. } Fn { A , B , C } ) ) |
| 67 |
66
|
biimprd |
|- ( F = { <. A , ( F ` A ) >. , <. B , ( F ` B ) >. , <. C , ( F ` C ) >. } -> ( { <. A , ( F ` A ) >. , <. B , ( F ` B ) >. , <. C , ( F ` C ) >. } Fn { A , B , C } -> F Fn { A , B , C } ) ) |
| 68 |
65 67
|
mpan9 |
|- ( ( ( ( A =/= B /\ A =/= C ) /\ B =/= C ) /\ F = { <. A , ( F ` A ) >. , <. B , ( F ` B ) >. , <. C , ( F ` C ) >. } ) -> F Fn { A , B , C } ) |
| 69 |
63 68
|
impbida |
|- ( ( ( A =/= B /\ A =/= C ) /\ B =/= C ) -> ( F Fn { A , B , C } <-> F = { <. A , ( F ` A ) >. , <. B , ( F ` B ) >. , <. C , ( F ` C ) >. } ) ) |
| 70 |
69
|
expcom |
|- ( B =/= C -> ( ( A =/= B /\ A =/= C ) -> ( F Fn { A , B , C } <-> F = { <. A , ( F ` A ) >. , <. B , ( F ` B ) >. , <. C , ( F ` C ) >. } ) ) ) |
| 71 |
21 70
|
pm2.61ine |
|- ( ( A =/= B /\ A =/= C ) -> ( F Fn { A , B , C } <-> F = { <. A , ( F ` A ) >. , <. B , ( F ` B ) >. , <. C , ( F ` C ) >. } ) ) |
| 72 |
1 3
|
fnprb |
|- ( F Fn { A , C } <-> F = { <. A , ( F ` A ) >. , <. C , ( F ` C ) >. } ) |
| 73 |
|
tpidm12 |
|- { A , A , C } = { A , C } |
| 74 |
73
|
eqcomi |
|- { A , C } = { A , A , C } |
| 75 |
74
|
fneq2i |
|- ( F Fn { A , C } <-> F Fn { A , A , C } ) |
| 76 |
|
tpidm12 |
|- { <. A , ( F ` A ) >. , <. A , ( F ` A ) >. , <. C , ( F ` C ) >. } = { <. A , ( F ` A ) >. , <. C , ( F ` C ) >. } |
| 77 |
76
|
eqcomi |
|- { <. A , ( F ` A ) >. , <. C , ( F ` C ) >. } = { <. A , ( F ` A ) >. , <. A , ( F ` A ) >. , <. C , ( F ` C ) >. } |
| 78 |
77
|
eqeq2i |
|- ( F = { <. A , ( F ` A ) >. , <. C , ( F ` C ) >. } <-> F = { <. A , ( F ` A ) >. , <. A , ( F ` A ) >. , <. C , ( F ` C ) >. } ) |
| 79 |
72 75 78
|
3bitr3i |
|- ( F Fn { A , A , C } <-> F = { <. A , ( F ` A ) >. , <. A , ( F ` A ) >. , <. C , ( F ` C ) >. } ) |
| 80 |
79
|
a1i |
|- ( A = B -> ( F Fn { A , A , C } <-> F = { <. A , ( F ` A ) >. , <. A , ( F ` A ) >. , <. C , ( F ` C ) >. } ) ) |
| 81 |
|
tpeq2 |
|- ( A = B -> { A , A , C } = { A , B , C } ) |
| 82 |
81
|
fneq2d |
|- ( A = B -> ( F Fn { A , A , C } <-> F Fn { A , B , C } ) ) |
| 83 |
|
id |
|- ( A = B -> A = B ) |
| 84 |
|
fveq2 |
|- ( A = B -> ( F ` A ) = ( F ` B ) ) |
| 85 |
83 84
|
opeq12d |
|- ( A = B -> <. A , ( F ` A ) >. = <. B , ( F ` B ) >. ) |
| 86 |
85
|
tpeq2d |
|- ( A = B -> { <. A , ( F ` A ) >. , <. A , ( F ` A ) >. , <. C , ( F ` C ) >. } = { <. A , ( F ` A ) >. , <. B , ( F ` B ) >. , <. C , ( F ` C ) >. } ) |
| 87 |
86
|
eqeq2d |
|- ( A = B -> ( F = { <. A , ( F ` A ) >. , <. A , ( F ` A ) >. , <. C , ( F ` C ) >. } <-> F = { <. A , ( F ` A ) >. , <. B , ( F ` B ) >. , <. C , ( F ` C ) >. } ) ) |
| 88 |
80 82 87
|
3bitr3d |
|- ( A = B -> ( F Fn { A , B , C } <-> F = { <. A , ( F ` A ) >. , <. B , ( F ` B ) >. , <. C , ( F ` C ) >. } ) ) |
| 89 |
|
tpidm13 |
|- { A , B , A } = { A , B } |
| 90 |
89
|
eqcomi |
|- { A , B } = { A , B , A } |
| 91 |
90
|
fneq2i |
|- ( F Fn { A , B } <-> F Fn { A , B , A } ) |
| 92 |
|
tpidm13 |
|- { <. A , ( F ` A ) >. , <. B , ( F ` B ) >. , <. A , ( F ` A ) >. } = { <. A , ( F ` A ) >. , <. B , ( F ` B ) >. } |
| 93 |
92
|
eqcomi |
|- { <. A , ( F ` A ) >. , <. B , ( F ` B ) >. } = { <. A , ( F ` A ) >. , <. B , ( F ` B ) >. , <. A , ( F ` A ) >. } |
| 94 |
93
|
eqeq2i |
|- ( F = { <. A , ( F ` A ) >. , <. B , ( F ` B ) >. } <-> F = { <. A , ( F ` A ) >. , <. B , ( F ` B ) >. , <. A , ( F ` A ) >. } ) |
| 95 |
4 91 94
|
3bitr3i |
|- ( F Fn { A , B , A } <-> F = { <. A , ( F ` A ) >. , <. B , ( F ` B ) >. , <. A , ( F ` A ) >. } ) |
| 96 |
95
|
a1i |
|- ( A = C -> ( F Fn { A , B , A } <-> F = { <. A , ( F ` A ) >. , <. B , ( F ` B ) >. , <. A , ( F ` A ) >. } ) ) |
| 97 |
|
tpeq3 |
|- ( A = C -> { A , B , A } = { A , B , C } ) |
| 98 |
97
|
fneq2d |
|- ( A = C -> ( F Fn { A , B , A } <-> F Fn { A , B , C } ) ) |
| 99 |
|
id |
|- ( A = C -> A = C ) |
| 100 |
|
fveq2 |
|- ( A = C -> ( F ` A ) = ( F ` C ) ) |
| 101 |
99 100
|
opeq12d |
|- ( A = C -> <. A , ( F ` A ) >. = <. C , ( F ` C ) >. ) |
| 102 |
101
|
tpeq3d |
|- ( A = C -> { <. A , ( F ` A ) >. , <. B , ( F ` B ) >. , <. A , ( F ` A ) >. } = { <. A , ( F ` A ) >. , <. B , ( F ` B ) >. , <. C , ( F ` C ) >. } ) |
| 103 |
102
|
eqeq2d |
|- ( A = C -> ( F = { <. A , ( F ` A ) >. , <. B , ( F ` B ) >. , <. A , ( F ` A ) >. } <-> F = { <. A , ( F ` A ) >. , <. B , ( F ` B ) >. , <. C , ( F ` C ) >. } ) ) |
| 104 |
96 98 103
|
3bitr3d |
|- ( A = C -> ( F Fn { A , B , C } <-> F = { <. A , ( F ` A ) >. , <. B , ( F ` B ) >. , <. C , ( F ` C ) >. } ) ) |
| 105 |
71 88 104
|
pm2.61iine |
|- ( F Fn { A , B , C } <-> F = { <. A , ( F ` A ) >. , <. B , ( F ` B ) >. , <. C , ( F ` C ) >. } ) |