| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fvtp2.1 |
|- B e. _V |
| 2 |
|
fvtp2.4 |
|- E e. _V |
| 3 |
|
tprot |
|- { <. A , D >. , <. B , E >. , <. C , F >. } = { <. B , E >. , <. C , F >. , <. A , D >. } |
| 4 |
3
|
fveq1i |
|- ( { <. A , D >. , <. B , E >. , <. C , F >. } ` B ) = ( { <. B , E >. , <. C , F >. , <. A , D >. } ` B ) |
| 5 |
|
necom |
|- ( A =/= B <-> B =/= A ) |
| 6 |
1 2
|
fvtp1 |
|- ( ( B =/= C /\ B =/= A ) -> ( { <. B , E >. , <. C , F >. , <. A , D >. } ` B ) = E ) |
| 7 |
6
|
ancoms |
|- ( ( B =/= A /\ B =/= C ) -> ( { <. B , E >. , <. C , F >. , <. A , D >. } ` B ) = E ) |
| 8 |
5 7
|
sylanb |
|- ( ( A =/= B /\ B =/= C ) -> ( { <. B , E >. , <. C , F >. , <. A , D >. } ` B ) = E ) |
| 9 |
4 8
|
eqtrid |
|- ( ( A =/= B /\ B =/= C ) -> ( { <. A , D >. , <. B , E >. , <. C , F >. } ` B ) = E ) |