Metamath Proof Explorer


Theorem fnpr2g

Description: A function whose domain has at most two elements can be represented as a set of at most two ordered pairs. (Contributed by Thierry Arnoux, 12-Jul-2020)

Ref Expression
Assertion fnpr2g AVBWFFnABF=AFABFB

Proof

Step Hyp Ref Expression
1 preq1 a=Aab=Ab
2 1 fneq2d a=AFFnabFFnAb
3 id a=Aa=A
4 fveq2 a=AFa=FA
5 3 4 opeq12d a=AaFa=AFA
6 5 preq1d a=AaFabFb=AFAbFb
7 6 eqeq2d a=AF=aFabFbF=AFAbFb
8 2 7 bibi12d a=AFFnabF=aFabFbFFnAbF=AFAbFb
9 preq2 b=BAb=AB
10 9 fneq2d b=BFFnAbFFnAB
11 id b=Bb=B
12 fveq2 b=BFb=FB
13 11 12 opeq12d b=BbFb=BFB
14 13 preq2d b=BAFAbFb=AFABFB
15 14 eqeq2d b=BF=AFAbFbF=AFABFB
16 10 15 bibi12d b=BFFnAbF=AFAbFbFFnABF=AFABFB
17 vex aV
18 vex bV
19 17 18 fnprb FFnabF=aFabFb
20 8 16 19 vtocl2g AVBWFFnABF=AFABFB