| Step |
Hyp |
Ref |
Expression |
| 1 |
|
simpr |
|
| 2 |
|
prid1g |
|
| 3 |
2
|
ad2antrr |
|
| 4 |
1 3
|
ffvelcdmd |
|
| 5 |
|
prid2g |
|
| 6 |
5
|
ad2antlr |
|
| 7 |
1 6
|
ffvelcdmd |
|
| 8 |
|
ffn |
|
| 9 |
8
|
adantl |
|
| 10 |
|
fnpr2g |
|
| 11 |
10
|
adantr |
|
| 12 |
9 11
|
mpbid |
|
| 13 |
4 7 12
|
3jca |
|
| 14 |
10
|
biimpar |
|
| 15 |
14
|
3ad2antr3 |
|
| 16 |
|
simpr3 |
|
| 17 |
2
|
ad2antrr |
|
| 18 |
|
simpr1 |
|
| 19 |
17 18
|
opelxpd |
|
| 20 |
5
|
ad2antlr |
|
| 21 |
|
simpr2 |
|
| 22 |
20 21
|
opelxpd |
|
| 23 |
19 22
|
prssd |
|
| 24 |
16 23
|
eqsstrd |
|
| 25 |
|
dff2 |
|
| 26 |
15 24 25
|
sylanbrc |
|
| 27 |
13 26
|
impbida |
|