Metamath Proof Explorer


Theorem fntp

Description: A function with a domain of three elements. (Contributed by NM, 14-Sep-2011) (Revised by Mario Carneiro, 26-Apr-2015)

Ref Expression
Hypotheses fntp.1 AV
fntp.2 BV
fntp.3 CV
fntp.4 DV
fntp.5 EV
fntp.6 FV
Assertion fntp ABACBCADBECFFnABC

Proof

Step Hyp Ref Expression
1 fntp.1 AV
2 fntp.2 BV
3 fntp.3 CV
4 fntp.4 DV
5 fntp.5 EV
6 fntp.6 FV
7 1 2 3 4 5 6 funtp ABACBCFunADBECF
8 4 5 6 dmtpop domADBECF=ABC
9 df-fn ADBECFFnABCFunADBECFdomADBECF=ABC
10 7 8 9 sylanblrc ABACBCADBECFFnABC