Metamath Proof Explorer


Theorem funcnvpr

Description: The converse pair of ordered pairs is a function if the second members are different. Note that the second members need not be sets. (Contributed by AV, 23-Jan-2021)

Ref Expression
Assertion funcnvpr AUCVBDFunABCD-1

Proof

Step Hyp Ref Expression
1 funcnvsn FunAB-1
2 funcnvsn FunCD-1
3 1 2 pm3.2i FunAB-1FunCD-1
4 df-rn ranAB=domAB-1
5 rnsnopg AUranAB=B
6 4 5 eqtr3id AUdomAB-1=B
7 df-rn ranCD=domCD-1
8 rnsnopg CVranCD=D
9 7 8 eqtr3id CVdomCD-1=D
10 6 9 ineqan12d AUCVdomAB-1domCD-1=BD
11 10 3adant3 AUCVBDdomAB-1domCD-1=BD
12 disjsn2 BDBD=
13 12 3ad2ant3 AUCVBDBD=
14 11 13 eqtrd AUCVBDdomAB-1domCD-1=
15 funun FunAB-1FunCD-1domAB-1domCD-1=FunAB-1CD-1
16 3 14 15 sylancr AUCVBDFunAB-1CD-1
17 df-pr ABCD=ABCD
18 17 cnveqi ABCD-1=ABCD-1
19 cnvun ABCD-1=AB-1CD-1
20 18 19 eqtri ABCD-1=AB-1CD-1
21 20 funeqi FunABCD-1FunAB-1CD-1
22 16 21 sylibr AUCVBDFunABCD-1