Metamath Proof Explorer


Theorem funcnvtp

Description: The converse triple of ordered pairs is a function if the second members are pairwise different. Note that the second members need not be sets. (Contributed by AV, 23-Jan-2021)

Ref Expression
Assertion funcnvtp A U C V E W B D B F D F Fun A B C D E F -1

Proof

Step Hyp Ref Expression
1 simp1 A U C V E W A U
2 simp2 A U C V E W C V
3 simp1 B D B F D F B D
4 funcnvpr A U C V B D Fun A B C D -1
5 1 2 3 4 syl2an3an A U C V E W B D B F D F Fun A B C D -1
6 funcnvsn Fun E F -1
7 6 a1i A U C V E W B D B F D F Fun E F -1
8 df-rn ran A B C D = dom A B C D -1
9 rnpropg A U C V ran A B C D = B D
10 8 9 syl5eqr A U C V dom A B C D -1 = B D
11 10 3adant3 A U C V E W dom A B C D -1 = B D
12 df-rn ran E F = dom E F -1
13 rnsnopg E W ran E F = F
14 12 13 syl5eqr E W dom E F -1 = F
15 14 3ad2ant3 A U C V E W dom E F -1 = F
16 11 15 ineq12d A U C V E W dom A B C D -1 dom E F -1 = B D F
17 disjprsn B F D F B D F =
18 17 3adant1 B D B F D F B D F =
19 16 18 sylan9eq A U C V E W B D B F D F dom A B C D -1 dom E F -1 =
20 funun Fun A B C D -1 Fun E F -1 dom A B C D -1 dom E F -1 = Fun A B C D -1 E F -1
21 5 7 19 20 syl21anc A U C V E W B D B F D F Fun A B C D -1 E F -1
22 df-tp A B C D E F = A B C D E F
23 22 cnveqi A B C D E F -1 = A B C D E F -1
24 cnvun A B C D E F -1 = A B C D -1 E F -1
25 23 24 eqtri A B C D E F -1 = A B C D -1 E F -1
26 25 funeqi Fun A B C D E F -1 Fun A B C D -1 E F -1
27 21 26 sylibr A U C V E W B D B F D F Fun A B C D E F -1