Metamath Proof Explorer


Theorem eqfunfv

Description: Equality of functions is determined by their values. (Contributed by Scott Fenton, 19-Jun-2011)

Ref Expression
Assertion eqfunfv FunFFunGF=GdomF=domGxdomFFx=Gx

Proof

Step Hyp Ref Expression
1 funfn FunFFFndomF
2 funfn FunGGFndomG
3 eqfnfv2 FFndomFGFndomGF=GdomF=domGxdomFFx=Gx
4 1 2 3 syl2anb FunFFunGF=GdomF=domGxdomFFx=Gx