Metamath Proof Explorer


Theorem tpeq3

Description: Equality theorem for unordered triples. (Contributed by NM, 13-Sep-2011)

Ref Expression
Assertion tpeq3 A=BCDA=CDB

Proof

Step Hyp Ref Expression
1 sneq A=BA=B
2 1 uneq2d A=BCDA=CDB
3 df-tp CDA=CDA
4 df-tp CDB=CDB
5 2 3 4 3eqtr4g A=BCDA=CDB