Metamath Proof Explorer


Theorem tpeq1d

Description: Equality theorem for unordered triples. (Contributed by NM, 22-Jun-2014)

Ref Expression
Hypothesis tpeq1d.1 φA=B
Assertion tpeq1d φACD=BCD

Proof

Step Hyp Ref Expression
1 tpeq1d.1 φA=B
2 tpeq1 A=BACD=BCD
3 1 2 syl φACD=BCD