Metamath Proof Explorer


Theorem tpeq1

Description: Equality theorem for unordered triples. (Contributed by NM, 13-Sep-2011)

Ref Expression
Assertion tpeq1 A=BACD=BCD

Proof

Step Hyp Ref Expression
1 preq1 A=BAC=BC
2 1 uneq1d A=BACD=BCD
3 df-tp ACD=ACD
4 df-tp BCD=BCD
5 2 3 4 3eqtr4g A=BACD=BCD