Metamath Proof Explorer


Theorem eltp

Description: A member of an unordered triple of classes is one of them. Special case of Exercise 1 of TakeutiZaring p. 17. (Contributed by NM, 8-Apr-1994) (Revised by Mario Carneiro, 11-Feb-2015)

Ref Expression
Hypothesis eltp.1 AV
Assertion eltp ABCDA=BA=CA=D

Proof

Step Hyp Ref Expression
1 eltp.1 AV
2 eltpg AVABCDA=BA=CA=D
3 1 2 ax-mp ABCDA=BA=CA=D