Metamath Proof Explorer


Theorem s8eqd

Description: Equality theorem for a length 8 word. (Contributed by Mario Carneiro, 27-Feb-2016)

Ref Expression
Hypotheses s2eqd.1 φA=N
s2eqd.2 φB=O
s3eqd.3 φC=P
s4eqd.4 φD=Q
s5eqd.5 φE=R
s6eqd.6 φF=S
s7eqd.6 φG=T
s8eqd.6 φH=U
Assertion s8eqd φ⟨“ABCDEFGH”⟩=⟨“NOPQRSTU”⟩

Proof

Step Hyp Ref Expression
1 s2eqd.1 φA=N
2 s2eqd.2 φB=O
3 s3eqd.3 φC=P
4 s4eqd.4 φD=Q
5 s5eqd.5 φE=R
6 s6eqd.6 φF=S
7 s7eqd.6 φG=T
8 s8eqd.6 φH=U
9 1 2 3 4 5 6 7 s7eqd φ⟨“ABCDEFG”⟩=⟨“NOPQRST”⟩
10 8 s1eqd φ⟨“H”⟩=⟨“U”⟩
11 9 10 oveq12d φ⟨“ABCDEFG”⟩++⟨“H”⟩=⟨“NOPQRST”⟩++⟨“U”⟩
12 df-s8 ⟨“ABCDEFGH”⟩=⟨“ABCDEFG”⟩++⟨“H”⟩
13 df-s8 ⟨“NOPQRSTU”⟩=⟨“NOPQRST”⟩++⟨“U”⟩
14 11 12 13 3eqtr4g φ⟨“ABCDEFGH”⟩=⟨“NOPQRSTU”⟩