Metamath Proof Explorer


Theorem s7eqd

Description: Equality theorem for a length 7 word. (Contributed by Mario Carneiro, 27-Feb-2016)

Ref Expression
Hypotheses s2eqd.1 φA=N
s2eqd.2 φB=O
s3eqd.3 φC=P
s4eqd.4 φD=Q
s5eqd.5 φE=R
s6eqd.6 φF=S
s7eqd.6 φG=T
Assertion s7eqd φ⟨“ABCDEFG”⟩=⟨“NOPQRST”⟩

Proof

Step Hyp Ref Expression
1 s2eqd.1 φA=N
2 s2eqd.2 φB=O
3 s3eqd.3 φC=P
4 s4eqd.4 φD=Q
5 s5eqd.5 φE=R
6 s6eqd.6 φF=S
7 s7eqd.6 φG=T
8 1 2 3 4 5 6 s6eqd φ⟨“ABCDEF”⟩=⟨“NOPQRS”⟩
9 7 s1eqd φ⟨“G”⟩=⟨“T”⟩
10 8 9 oveq12d φ⟨“ABCDEF”⟩++⟨“G”⟩=⟨“NOPQRS”⟩++⟨“T”⟩
11 df-s7 ⟨“ABCDEFG”⟩=⟨“ABCDEF”⟩++⟨“G”⟩
12 df-s7 ⟨“NOPQRST”⟩=⟨“NOPQRS”⟩++⟨“T”⟩
13 10 11 12 3eqtr4g φ⟨“ABCDEFG”⟩=⟨“NOPQRST”⟩