| Step |
Hyp |
Ref |
Expression |
| 1 |
|
simpl |
|
| 2 |
|
lencl |
|
| 3 |
|
1z |
|
| 4 |
|
nn0z |
|
| 5 |
|
zltp1le |
|
| 6 |
3 4 5
|
sylancr |
|
| 7 |
|
1p1e2 |
|
| 8 |
7
|
a1i |
|
| 9 |
8
|
breq1d |
|
| 10 |
9
|
biimpd |
|
| 11 |
6 10
|
sylbid |
|
| 12 |
11
|
imp |
|
| 13 |
|
2nn0 |
|
| 14 |
13
|
jctl |
|
| 15 |
14
|
adantr |
|
| 16 |
|
nn0sub |
|
| 17 |
15 16
|
syl |
|
| 18 |
12 17
|
mpbid |
|
| 19 |
2 18
|
sylan |
|
| 20 |
|
0red |
|
| 21 |
|
1red |
|
| 22 |
|
zre |
|
| 23 |
20 21 22
|
3jca |
|
| 24 |
|
0lt1 |
|
| 25 |
|
lttr |
|
| 26 |
25
|
expd |
|
| 27 |
23 24 26
|
mpisyl |
|
| 28 |
|
elnnz |
|
| 29 |
28
|
simplbi2 |
|
| 30 |
27 29
|
syld |
|
| 31 |
4 30
|
syl |
|
| 32 |
31
|
imp |
|
| 33 |
|
fzo0end |
|
| 34 |
32 33
|
syl |
|
| 35 |
|
nn0cn |
|
| 36 |
|
2cn |
|
| 37 |
36
|
a1i |
|
| 38 |
|
1cnd |
|
| 39 |
35 37 38
|
3jca |
|
| 40 |
|
1e2m1 |
|
| 41 |
40
|
a1i |
|
| 42 |
41
|
oveq2d |
|
| 43 |
|
subsub |
|
| 44 |
42 43
|
eqtrd |
|
| 45 |
39 44
|
syl |
|
| 46 |
45
|
eqcomd |
|
| 47 |
46
|
eleq1d |
|
| 48 |
47
|
adantr |
|
| 49 |
34 48
|
mpbird |
|
| 50 |
2 49
|
sylan |
|
| 51 |
1 19 50
|
3jca |
|
| 52 |
|
swrds2 |
|
| 53 |
51 52
|
syl |
|
| 54 |
35 36
|
jctir |
|
| 55 |
|
npcan |
|
| 56 |
55
|
eqcomd |
|
| 57 |
2 54 56
|
3syl |
|
| 58 |
57
|
adantr |
|
| 59 |
58
|
opeq2d |
|
| 60 |
59
|
oveq2d |
|
| 61 |
|
eqidd |
|
| 62 |
|
lsw |
|
| 63 |
39 43
|
syl |
|
| 64 |
63
|
eqcomd |
|
| 65 |
|
2m1e1 |
|
| 66 |
65
|
a1i |
|
| 67 |
66
|
oveq2d |
|
| 68 |
64 67
|
eqtrd |
|
| 69 |
2 68
|
syl |
|
| 70 |
69
|
eqcomd |
|
| 71 |
70
|
fveq2d |
|
| 72 |
62 71
|
eqtrd |
|
| 73 |
72
|
adantr |
|
| 74 |
61 73
|
s2eqd |
|
| 75 |
53 60 74
|
3eqtr4d |
|