Metamath Proof Explorer


Theorem 0lt1

Description: 0 is less than 1. Theorem I.21 of Apostol p. 20. (Contributed by NM, 17-Jan-1997)

Ref Expression
Assertion 0lt1 0 < 1

Proof

Step Hyp Ref Expression
1 1re 1
2 ax-1ne0 1 0
3 msqgt0 1 1 0 0 < 1 1
4 1 2 3 mp2an 0 < 1 1
5 ax-1cn 1
6 5 mulid1i 1 1 = 1
7 4 6 breqtri 0 < 1