| Step |
Hyp |
Ref |
Expression |
| 1 |
|
df-s2 |
|
| 2 |
|
simp1 |
|
| 3 |
|
simp2 |
|
| 4 |
|
elfzo0 |
|
| 5 |
4
|
simp2bi |
|
| 6 |
5
|
3ad2ant3 |
|
| 7 |
3
|
nn0red |
|
| 8 |
|
peano2nn0 |
|
| 9 |
3 8
|
syl |
|
| 10 |
9
|
nn0red |
|
| 11 |
6
|
nnred |
|
| 12 |
7
|
lep1d |
|
| 13 |
|
elfzolt2 |
|
| 14 |
13
|
3ad2ant3 |
|
| 15 |
7 10 11 12 14
|
lelttrd |
|
| 16 |
|
elfzo0 |
|
| 17 |
3 6 15 16
|
syl3anbrc |
|
| 18 |
|
swrds1 |
|
| 19 |
2 17 18
|
syl2anc |
|
| 20 |
|
nn0cn |
|
| 21 |
20
|
3ad2ant2 |
|
| 22 |
|
df-2 |
|
| 23 |
22
|
oveq2i |
|
| 24 |
|
ax-1cn |
|
| 25 |
|
addass |
|
| 26 |
24 24 25
|
mp3an23 |
|
| 27 |
23 26
|
eqtr4id |
|
| 28 |
21 27
|
syl |
|
| 29 |
28
|
opeq2d |
|
| 30 |
29
|
oveq2d |
|
| 31 |
|
swrds1 |
|
| 32 |
31
|
3adant2 |
|
| 33 |
30 32
|
eqtrd |
|
| 34 |
19 33
|
oveq12d |
|
| 35 |
1 34
|
eqtr4id |
|
| 36 |
|
elfz2nn0 |
|
| 37 |
3 9 12 36
|
syl3anbrc |
|
| 38 |
|
peano2nn0 |
|
| 39 |
9 38
|
syl |
|
| 40 |
28 39
|
eqeltrd |
|
| 41 |
10
|
lep1d |
|
| 42 |
41 28
|
breqtrrd |
|
| 43 |
|
elfz2nn0 |
|
| 44 |
9 40 42 43
|
syl3anbrc |
|
| 45 |
|
fzofzp1 |
|
| 46 |
45
|
3ad2ant3 |
|
| 47 |
28 46
|
eqeltrd |
|
| 48 |
|
ccatswrd |
|
| 49 |
2 37 44 47 48
|
syl13anc |
|
| 50 |
35 49
|
eqtr2d |
|