Metamath Proof Explorer


Theorem elfzo0

Description: Membership in a half-open integer range based at 0. (Contributed by Stefan O'Rear, 15-Aug-2015) (Revised by Mario Carneiro, 29-Sep-2015)

Ref Expression
Assertion elfzo0 A0..^BA0BA<B

Proof

Step Hyp Ref Expression
1 elfzouz A0..^BA0
2 elnn0uz A0A0
3 1 2 sylibr A0..^BA0
4 elfzolt3b A0..^B00..^B
5 lbfzo0 00..^BB
6 4 5 sylib A0..^BB
7 elfzolt2 A0..^BA<B
8 3 6 7 3jca A0..^BA0BA<B
9 simp1 A0BA<BA0
10 9 2 sylib A0BA<BA0
11 nnz BB
12 11 3ad2ant2 A0BA<BB
13 simp3 A0BA<BA<B
14 elfzo2 A0..^BA0BA<B
15 10 12 13 14 syl3anbrc A0BA<BA0..^B
16 8 15 impbii A0..^BA0BA<B