Metamath Proof Explorer


Theorem elfzo2

Description: Membership in a half-open integer interval. (Contributed by Mario Carneiro, 29-Sep-2015)

Ref Expression
Assertion elfzo2 K M ..^ N K M N K < N

Proof

Step Hyp Ref Expression
1 an4 K M N M K K < N K M M K N K < N
2 df-3an K M N K M N
3 2 anbi1i K M N M K K < N K M N M K K < N
4 eluz2 K M M K M K
5 3ancoma M K M K K M M K
6 df-3an K M M K K M M K
7 4 5 6 3bitri K M K M M K
8 7 anbi1i K M N K < N K M M K N K < N
9 1 3 8 3bitr4i K M N M K K < N K M N K < N
10 elfzoelz K M ..^ N K
11 elfzoel1 K M ..^ N M
12 elfzoel2 K M ..^ N N
13 10 11 12 3jca K M ..^ N K M N
14 elfzo K M N K M ..^ N M K K < N
15 13 14 biadanii K M ..^ N K M N M K K < N
16 3anass K M N K < N K M N K < N
17 9 15 16 3bitr4i K M ..^ N K M N K < N