Metamath Proof Explorer


Theorem elfzolt2

Description: A member in a half-open integer interval is less than the upper bound. (Contributed by Stefan O'Rear, 15-Aug-2015)

Ref Expression
Assertion elfzolt2 KM..^NK<N

Proof

Step Hyp Ref Expression
1 elfzoelz KM..^NK
2 elfzoel1 KM..^NM
3 elfzoel2 KM..^NN
4 elfzo KMNKM..^NMKK<N
5 1 2 3 4 syl3anc KM..^NKM..^NMKK<N
6 5 ibi KM..^NMKK<N
7 6 simprd KM..^NK<N