Metamath Proof Explorer


Theorem elfzo0

Description: Membership in a half-open integer range based at 0. (Contributed by Stefan O'Rear, 15-Aug-2015) (Revised by Mario Carneiro, 29-Sep-2015)

Ref Expression
Assertion elfzo0 ( 𝐴 ∈ ( 0 ..^ 𝐵 ) ↔ ( 𝐴 ∈ ℕ0𝐵 ∈ ℕ ∧ 𝐴 < 𝐵 ) )

Proof

Step Hyp Ref Expression
1 elfzouz ( 𝐴 ∈ ( 0 ..^ 𝐵 ) → 𝐴 ∈ ( ℤ ‘ 0 ) )
2 elnn0uz ( 𝐴 ∈ ℕ0𝐴 ∈ ( ℤ ‘ 0 ) )
3 1 2 sylibr ( 𝐴 ∈ ( 0 ..^ 𝐵 ) → 𝐴 ∈ ℕ0 )
4 elfzolt3b ( 𝐴 ∈ ( 0 ..^ 𝐵 ) → 0 ∈ ( 0 ..^ 𝐵 ) )
5 lbfzo0 ( 0 ∈ ( 0 ..^ 𝐵 ) ↔ 𝐵 ∈ ℕ )
6 4 5 sylib ( 𝐴 ∈ ( 0 ..^ 𝐵 ) → 𝐵 ∈ ℕ )
7 elfzolt2 ( 𝐴 ∈ ( 0 ..^ 𝐵 ) → 𝐴 < 𝐵 )
8 3 6 7 3jca ( 𝐴 ∈ ( 0 ..^ 𝐵 ) → ( 𝐴 ∈ ℕ0𝐵 ∈ ℕ ∧ 𝐴 < 𝐵 ) )
9 simp1 ( ( 𝐴 ∈ ℕ0𝐵 ∈ ℕ ∧ 𝐴 < 𝐵 ) → 𝐴 ∈ ℕ0 )
10 9 2 sylib ( ( 𝐴 ∈ ℕ0𝐵 ∈ ℕ ∧ 𝐴 < 𝐵 ) → 𝐴 ∈ ( ℤ ‘ 0 ) )
11 nnz ( 𝐵 ∈ ℕ → 𝐵 ∈ ℤ )
12 11 3ad2ant2 ( ( 𝐴 ∈ ℕ0𝐵 ∈ ℕ ∧ 𝐴 < 𝐵 ) → 𝐵 ∈ ℤ )
13 simp3 ( ( 𝐴 ∈ ℕ0𝐵 ∈ ℕ ∧ 𝐴 < 𝐵 ) → 𝐴 < 𝐵 )
14 elfzo2 ( 𝐴 ∈ ( 0 ..^ 𝐵 ) ↔ ( 𝐴 ∈ ( ℤ ‘ 0 ) ∧ 𝐵 ∈ ℤ ∧ 𝐴 < 𝐵 ) )
15 10 12 13 14 syl3anbrc ( ( 𝐴 ∈ ℕ0𝐵 ∈ ℕ ∧ 𝐴 < 𝐵 ) → 𝐴 ∈ ( 0 ..^ 𝐵 ) )
16 8 15 impbii ( 𝐴 ∈ ( 0 ..^ 𝐵 ) ↔ ( 𝐴 ∈ ℕ0𝐵 ∈ ℕ ∧ 𝐴 < 𝐵 ) )