Step |
Hyp |
Ref |
Expression |
1 |
|
elfzo0 |
⊢ ( 𝐴 ∈ ( 0 ..^ 𝐵 ) ↔ ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ ∧ 𝐴 < 𝐵 ) ) |
2 |
|
nnz |
⊢ ( 𝐵 ∈ ℕ → 𝐵 ∈ ℤ ) |
3 |
2
|
3anim2i |
⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ ∧ 𝐴 < 𝐵 ) → ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℤ ∧ 𝐴 < 𝐵 ) ) |
4 |
|
simp1 |
⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℤ ∧ 𝐴 < 𝐵 ) → 𝐴 ∈ ℕ0 ) |
5 |
|
elnn0z |
⊢ ( 𝐴 ∈ ℕ0 ↔ ( 𝐴 ∈ ℤ ∧ 0 ≤ 𝐴 ) ) |
6 |
|
0red |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → 0 ∈ ℝ ) |
7 |
|
zre |
⊢ ( 𝐴 ∈ ℤ → 𝐴 ∈ ℝ ) |
8 |
7
|
adantr |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → 𝐴 ∈ ℝ ) |
9 |
|
zre |
⊢ ( 𝐵 ∈ ℤ → 𝐵 ∈ ℝ ) |
10 |
9
|
adantl |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → 𝐵 ∈ ℝ ) |
11 |
|
lelttr |
⊢ ( ( 0 ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ( 0 ≤ 𝐴 ∧ 𝐴 < 𝐵 ) → 0 < 𝐵 ) ) |
12 |
6 8 10 11
|
syl3anc |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( ( 0 ≤ 𝐴 ∧ 𝐴 < 𝐵 ) → 0 < 𝐵 ) ) |
13 |
|
elnnz |
⊢ ( 𝐵 ∈ ℕ ↔ ( 𝐵 ∈ ℤ ∧ 0 < 𝐵 ) ) |
14 |
13
|
simplbi2 |
⊢ ( 𝐵 ∈ ℤ → ( 0 < 𝐵 → 𝐵 ∈ ℕ ) ) |
15 |
14
|
adantl |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( 0 < 𝐵 → 𝐵 ∈ ℕ ) ) |
16 |
12 15
|
syld |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( ( 0 ≤ 𝐴 ∧ 𝐴 < 𝐵 ) → 𝐵 ∈ ℕ ) ) |
17 |
16
|
expd |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( 0 ≤ 𝐴 → ( 𝐴 < 𝐵 → 𝐵 ∈ ℕ ) ) ) |
18 |
17
|
impancom |
⊢ ( ( 𝐴 ∈ ℤ ∧ 0 ≤ 𝐴 ) → ( 𝐵 ∈ ℤ → ( 𝐴 < 𝐵 → 𝐵 ∈ ℕ ) ) ) |
19 |
5 18
|
sylbi |
⊢ ( 𝐴 ∈ ℕ0 → ( 𝐵 ∈ ℤ → ( 𝐴 < 𝐵 → 𝐵 ∈ ℕ ) ) ) |
20 |
19
|
3imp |
⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℤ ∧ 𝐴 < 𝐵 ) → 𝐵 ∈ ℕ ) |
21 |
|
simp3 |
⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℤ ∧ 𝐴 < 𝐵 ) → 𝐴 < 𝐵 ) |
22 |
4 20 21
|
3jca |
⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℤ ∧ 𝐴 < 𝐵 ) → ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ ∧ 𝐴 < 𝐵 ) ) |
23 |
3 22
|
impbii |
⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ ∧ 𝐴 < 𝐵 ) ↔ ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℤ ∧ 𝐴 < 𝐵 ) ) |
24 |
1 23
|
bitri |
⊢ ( 𝐴 ∈ ( 0 ..^ 𝐵 ) ↔ ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℤ ∧ 𝐴 < 𝐵 ) ) |