| Step |
Hyp |
Ref |
Expression |
| 1 |
|
elfzo0 |
|- ( A e. ( 0 ..^ B ) <-> ( A e. NN0 /\ B e. NN /\ A < B ) ) |
| 2 |
|
nnz |
|- ( B e. NN -> B e. ZZ ) |
| 3 |
2
|
3anim2i |
|- ( ( A e. NN0 /\ B e. NN /\ A < B ) -> ( A e. NN0 /\ B e. ZZ /\ A < B ) ) |
| 4 |
|
simp1 |
|- ( ( A e. NN0 /\ B e. ZZ /\ A < B ) -> A e. NN0 ) |
| 5 |
|
elnn0z |
|- ( A e. NN0 <-> ( A e. ZZ /\ 0 <_ A ) ) |
| 6 |
|
0red |
|- ( ( A e. ZZ /\ B e. ZZ ) -> 0 e. RR ) |
| 7 |
|
zre |
|- ( A e. ZZ -> A e. RR ) |
| 8 |
7
|
adantr |
|- ( ( A e. ZZ /\ B e. ZZ ) -> A e. RR ) |
| 9 |
|
zre |
|- ( B e. ZZ -> B e. RR ) |
| 10 |
9
|
adantl |
|- ( ( A e. ZZ /\ B e. ZZ ) -> B e. RR ) |
| 11 |
|
lelttr |
|- ( ( 0 e. RR /\ A e. RR /\ B e. RR ) -> ( ( 0 <_ A /\ A < B ) -> 0 < B ) ) |
| 12 |
6 8 10 11
|
syl3anc |
|- ( ( A e. ZZ /\ B e. ZZ ) -> ( ( 0 <_ A /\ A < B ) -> 0 < B ) ) |
| 13 |
|
elnnz |
|- ( B e. NN <-> ( B e. ZZ /\ 0 < B ) ) |
| 14 |
13
|
simplbi2 |
|- ( B e. ZZ -> ( 0 < B -> B e. NN ) ) |
| 15 |
14
|
adantl |
|- ( ( A e. ZZ /\ B e. ZZ ) -> ( 0 < B -> B e. NN ) ) |
| 16 |
12 15
|
syld |
|- ( ( A e. ZZ /\ B e. ZZ ) -> ( ( 0 <_ A /\ A < B ) -> B e. NN ) ) |
| 17 |
16
|
expd |
|- ( ( A e. ZZ /\ B e. ZZ ) -> ( 0 <_ A -> ( A < B -> B e. NN ) ) ) |
| 18 |
17
|
impancom |
|- ( ( A e. ZZ /\ 0 <_ A ) -> ( B e. ZZ -> ( A < B -> B e. NN ) ) ) |
| 19 |
5 18
|
sylbi |
|- ( A e. NN0 -> ( B e. ZZ -> ( A < B -> B e. NN ) ) ) |
| 20 |
19
|
3imp |
|- ( ( A e. NN0 /\ B e. ZZ /\ A < B ) -> B e. NN ) |
| 21 |
|
simp3 |
|- ( ( A e. NN0 /\ B e. ZZ /\ A < B ) -> A < B ) |
| 22 |
4 20 21
|
3jca |
|- ( ( A e. NN0 /\ B e. ZZ /\ A < B ) -> ( A e. NN0 /\ B e. NN /\ A < B ) ) |
| 23 |
3 22
|
impbii |
|- ( ( A e. NN0 /\ B e. NN /\ A < B ) <-> ( A e. NN0 /\ B e. ZZ /\ A < B ) ) |
| 24 |
1 23
|
bitri |
|- ( A e. ( 0 ..^ B ) <-> ( A e. NN0 /\ B e. ZZ /\ A < B ) ) |