| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							elnn0 | 
							 |-  ( N e. NN0 <-> ( N e. NN \/ N = 0 ) )  | 
						
						
							| 2 | 
							
								
							 | 
							elnnz | 
							 |-  ( N e. NN <-> ( N e. ZZ /\ 0 < N ) )  | 
						
						
							| 3 | 
							
								
							 | 
							eqcom | 
							 |-  ( N = 0 <-> 0 = N )  | 
						
						
							| 4 | 
							
								2 3
							 | 
							orbi12i | 
							 |-  ( ( N e. NN \/ N = 0 ) <-> ( ( N e. ZZ /\ 0 < N ) \/ 0 = N ) )  | 
						
						
							| 5 | 
							
								
							 | 
							id | 
							 |-  ( N e. ZZ -> N e. ZZ )  | 
						
						
							| 6 | 
							
								
							 | 
							0z | 
							 |-  0 e. ZZ  | 
						
						
							| 7 | 
							
								
							 | 
							eleq1 | 
							 |-  ( 0 = N -> ( 0 e. ZZ <-> N e. ZZ ) )  | 
						
						
							| 8 | 
							
								6 7
							 | 
							mpbii | 
							 |-  ( 0 = N -> N e. ZZ )  | 
						
						
							| 9 | 
							
								5 8
							 | 
							jaoi | 
							 |-  ( ( N e. ZZ \/ 0 = N ) -> N e. ZZ )  | 
						
						
							| 10 | 
							
								
							 | 
							orc | 
							 |-  ( N e. ZZ -> ( N e. ZZ \/ 0 = N ) )  | 
						
						
							| 11 | 
							
								9 10
							 | 
							impbii | 
							 |-  ( ( N e. ZZ \/ 0 = N ) <-> N e. ZZ )  | 
						
						
							| 12 | 
							
								11
							 | 
							anbi1i | 
							 |-  ( ( ( N e. ZZ \/ 0 = N ) /\ ( 0 < N \/ 0 = N ) ) <-> ( N e. ZZ /\ ( 0 < N \/ 0 = N ) ) )  | 
						
						
							| 13 | 
							
								
							 | 
							ordir | 
							 |-  ( ( ( N e. ZZ /\ 0 < N ) \/ 0 = N ) <-> ( ( N e. ZZ \/ 0 = N ) /\ ( 0 < N \/ 0 = N ) ) )  | 
						
						
							| 14 | 
							
								
							 | 
							0re | 
							 |-  0 e. RR  | 
						
						
							| 15 | 
							
								
							 | 
							zre | 
							 |-  ( N e. ZZ -> N e. RR )  | 
						
						
							| 16 | 
							
								
							 | 
							leloe | 
							 |-  ( ( 0 e. RR /\ N e. RR ) -> ( 0 <_ N <-> ( 0 < N \/ 0 = N ) ) )  | 
						
						
							| 17 | 
							
								14 15 16
							 | 
							sylancr | 
							 |-  ( N e. ZZ -> ( 0 <_ N <-> ( 0 < N \/ 0 = N ) ) )  | 
						
						
							| 18 | 
							
								17
							 | 
							pm5.32i | 
							 |-  ( ( N e. ZZ /\ 0 <_ N ) <-> ( N e. ZZ /\ ( 0 < N \/ 0 = N ) ) )  | 
						
						
							| 19 | 
							
								12 13 18
							 | 
							3bitr4i | 
							 |-  ( ( ( N e. ZZ /\ 0 < N ) \/ 0 = N ) <-> ( N e. ZZ /\ 0 <_ N ) )  | 
						
						
							| 20 | 
							
								1 4 19
							 | 
							3bitri | 
							 |-  ( N e. NN0 <-> ( N e. ZZ /\ 0 <_ N ) )  |