Step |
Hyp |
Ref |
Expression |
1 |
|
elnn0 |
|- ( N e. NN0 <-> ( N e. NN \/ N = 0 ) ) |
2 |
|
elnnz |
|- ( N e. NN <-> ( N e. ZZ /\ 0 < N ) ) |
3 |
|
eqcom |
|- ( N = 0 <-> 0 = N ) |
4 |
2 3
|
orbi12i |
|- ( ( N e. NN \/ N = 0 ) <-> ( ( N e. ZZ /\ 0 < N ) \/ 0 = N ) ) |
5 |
|
id |
|- ( N e. ZZ -> N e. ZZ ) |
6 |
|
0z |
|- 0 e. ZZ |
7 |
|
eleq1 |
|- ( 0 = N -> ( 0 e. ZZ <-> N e. ZZ ) ) |
8 |
6 7
|
mpbii |
|- ( 0 = N -> N e. ZZ ) |
9 |
5 8
|
jaoi |
|- ( ( N e. ZZ \/ 0 = N ) -> N e. ZZ ) |
10 |
|
orc |
|- ( N e. ZZ -> ( N e. ZZ \/ 0 = N ) ) |
11 |
9 10
|
impbii |
|- ( ( N e. ZZ \/ 0 = N ) <-> N e. ZZ ) |
12 |
11
|
anbi1i |
|- ( ( ( N e. ZZ \/ 0 = N ) /\ ( 0 < N \/ 0 = N ) ) <-> ( N e. ZZ /\ ( 0 < N \/ 0 = N ) ) ) |
13 |
|
ordir |
|- ( ( ( N e. ZZ /\ 0 < N ) \/ 0 = N ) <-> ( ( N e. ZZ \/ 0 = N ) /\ ( 0 < N \/ 0 = N ) ) ) |
14 |
|
0re |
|- 0 e. RR |
15 |
|
zre |
|- ( N e. ZZ -> N e. RR ) |
16 |
|
leloe |
|- ( ( 0 e. RR /\ N e. RR ) -> ( 0 <_ N <-> ( 0 < N \/ 0 = N ) ) ) |
17 |
14 15 16
|
sylancr |
|- ( N e. ZZ -> ( 0 <_ N <-> ( 0 < N \/ 0 = N ) ) ) |
18 |
17
|
pm5.32i |
|- ( ( N e. ZZ /\ 0 <_ N ) <-> ( N e. ZZ /\ ( 0 < N \/ 0 = N ) ) ) |
19 |
12 13 18
|
3bitr4i |
|- ( ( ( N e. ZZ /\ 0 < N ) \/ 0 = N ) <-> ( N e. ZZ /\ 0 <_ N ) ) |
20 |
1 4 19
|
3bitri |
|- ( N e. NN0 <-> ( N e. ZZ /\ 0 <_ N ) ) |