Metamath Proof Explorer


Theorem elnn0z

Description: Nonnegative integer property expressed in terms of integers. (Contributed by NM, 9-May-2004)

Ref Expression
Assertion elnn0z
|- ( N e. NN0 <-> ( N e. ZZ /\ 0 <_ N ) )

Proof

Step Hyp Ref Expression
1 elnn0
 |-  ( N e. NN0 <-> ( N e. NN \/ N = 0 ) )
2 elnnz
 |-  ( N e. NN <-> ( N e. ZZ /\ 0 < N ) )
3 eqcom
 |-  ( N = 0 <-> 0 = N )
4 2 3 orbi12i
 |-  ( ( N e. NN \/ N = 0 ) <-> ( ( N e. ZZ /\ 0 < N ) \/ 0 = N ) )
5 id
 |-  ( N e. ZZ -> N e. ZZ )
6 0z
 |-  0 e. ZZ
7 eleq1
 |-  ( 0 = N -> ( 0 e. ZZ <-> N e. ZZ ) )
8 6 7 mpbii
 |-  ( 0 = N -> N e. ZZ )
9 5 8 jaoi
 |-  ( ( N e. ZZ \/ 0 = N ) -> N e. ZZ )
10 orc
 |-  ( N e. ZZ -> ( N e. ZZ \/ 0 = N ) )
11 9 10 impbii
 |-  ( ( N e. ZZ \/ 0 = N ) <-> N e. ZZ )
12 11 anbi1i
 |-  ( ( ( N e. ZZ \/ 0 = N ) /\ ( 0 < N \/ 0 = N ) ) <-> ( N e. ZZ /\ ( 0 < N \/ 0 = N ) ) )
13 ordir
 |-  ( ( ( N e. ZZ /\ 0 < N ) \/ 0 = N ) <-> ( ( N e. ZZ \/ 0 = N ) /\ ( 0 < N \/ 0 = N ) ) )
14 0re
 |-  0 e. RR
15 zre
 |-  ( N e. ZZ -> N e. RR )
16 leloe
 |-  ( ( 0 e. RR /\ N e. RR ) -> ( 0 <_ N <-> ( 0 < N \/ 0 = N ) ) )
17 14 15 16 sylancr
 |-  ( N e. ZZ -> ( 0 <_ N <-> ( 0 < N \/ 0 = N ) ) )
18 17 pm5.32i
 |-  ( ( N e. ZZ /\ 0 <_ N ) <-> ( N e. ZZ /\ ( 0 < N \/ 0 = N ) ) )
19 12 13 18 3bitr4i
 |-  ( ( ( N e. ZZ /\ 0 < N ) \/ 0 = N ) <-> ( N e. ZZ /\ 0 <_ N ) )
20 1 4 19 3bitri
 |-  ( N e. NN0 <-> ( N e. ZZ /\ 0 <_ N ) )