Metamath Proof Explorer


Theorem elnn0z

Description: Nonnegative integer property expressed in terms of integers. (Contributed by NM, 9-May-2004)

Ref Expression
Assertion elnn0z N0N0N

Proof

Step Hyp Ref Expression
1 elnn0 N0NN=0
2 elnnz NN0<N
3 eqcom N=00=N
4 2 3 orbi12i NN=0N0<N0=N
5 id NN
6 0z 0
7 eleq1 0=N0N
8 6 7 mpbii 0=NN
9 5 8 jaoi N0=NN
10 orc NN0=N
11 9 10 impbii N0=NN
12 11 anbi1i N0=N0<N0=NN0<N0=N
13 ordir N0<N0=NN0=N0<N0=N
14 0re 0
15 zre NN
16 leloe 0N0N0<N0=N
17 14 15 16 sylancr N0N0<N0=N
18 17 pm5.32i N0NN0<N0=N
19 12 13 18 3bitr4i N0<N0=NN0N
20 1 4 19 3bitri N0N0N