Metamath Proof Explorer


Theorem elznn0nn

Description: Integer property expressed in terms nonnegative integers and positive integers. (Contributed by NM, 10-May-2004)

Ref Expression
Assertion elznn0nn NN0NN

Proof

Step Hyp Ref Expression
1 elz NNN=0NN
2 andi NN=0NNNN=0NNN
3 df-3or N=0NNN=0NN
4 3 anbi2i NN=0NNNN=0NN
5 nn0re N0N
6 5 pm4.71ri N0NN0
7 elnn0 N0NN=0
8 orcom NN=0N=0N
9 7 8 bitri N0N=0N
10 9 anbi2i NN0NN=0N
11 6 10 bitri N0NN=0N
12 11 orbi1i N0NNNN=0NNN
13 2 4 12 3bitr4i NN=0NNN0NN
14 1 13 bitri NN0NN