Metamath Proof Explorer


Theorem elznn0

Description: Integer property expressed in terms of nonnegative integers. (Contributed by NM, 9-May-2004)

Ref Expression
Assertion elznn0 NNN0N0

Proof

Step Hyp Ref Expression
1 elz NNN=0NN
2 elnn0 N0NN=0
3 2 a1i NN0NN=0
4 elnn0 N0NN=0
5 recn NN
6 0cn 0
7 negcon1 N0N=00=N
8 5 6 7 sylancl NN=00=N
9 neg0 0=0
10 9 eqeq1i 0=N0=N
11 eqcom 0=NN=0
12 10 11 bitri 0=NN=0
13 8 12 bitrdi NN=0N=0
14 13 orbi2d NNN=0NN=0
15 4 14 bitrid NN0NN=0
16 3 15 orbi12d NN0N0NN=0NN=0
17 3orass N=0NNN=0NN
18 orcom N=0NNNNN=0
19 orordir NNN=0NN=0NN=0
20 17 18 19 3bitrri NN=0NN=0N=0NN
21 16 20 bitr2di NN=0NNN0N0
22 21 pm5.32i NN=0NNNN0N0
23 1 22 bitri NNN0N0