Metamath Proof Explorer


Theorem elznn

Description: Integer property expressed in terms of positive integers and nonnegative integers. (Contributed by NM, 12-Jul-2005)

Ref Expression
Assertion elznn NNNN0

Proof

Step Hyp Ref Expression
1 elz NNN=0NN
2 3orrot N=0NNNNN=0
3 3orass NNN=0NNN=0
4 2 3 bitri N=0NNNNN=0
5 elnn0 N0NN=0
6 recn NN
7 6 negeq0d NN=0N=0
8 7 orbi2d NNN=0NN=0
9 5 8 bitr4id NN0NN=0
10 9 orbi2d NNN0NNN=0
11 4 10 bitr4id NN=0NNNN0
12 11 pm5.32i NN=0NNNNN0
13 1 12 bitri NNNN0