| Step | Hyp | Ref | Expression | 
						
							| 1 |  | elz | ⊢ ( 𝑁  ∈  ℤ  ↔  ( 𝑁  ∈  ℝ  ∧  ( 𝑁  =  0  ∨  𝑁  ∈  ℕ  ∨  - 𝑁  ∈  ℕ ) ) ) | 
						
							| 2 |  | elnn0 | ⊢ ( 𝑁  ∈  ℕ0  ↔  ( 𝑁  ∈  ℕ  ∨  𝑁  =  0 ) ) | 
						
							| 3 | 2 | a1i | ⊢ ( 𝑁  ∈  ℝ  →  ( 𝑁  ∈  ℕ0  ↔  ( 𝑁  ∈  ℕ  ∨  𝑁  =  0 ) ) ) | 
						
							| 4 |  | elnn0 | ⊢ ( - 𝑁  ∈  ℕ0  ↔  ( - 𝑁  ∈  ℕ  ∨  - 𝑁  =  0 ) ) | 
						
							| 5 |  | recn | ⊢ ( 𝑁  ∈  ℝ  →  𝑁  ∈  ℂ ) | 
						
							| 6 |  | 0cn | ⊢ 0  ∈  ℂ | 
						
							| 7 |  | negcon1 | ⊢ ( ( 𝑁  ∈  ℂ  ∧  0  ∈  ℂ )  →  ( - 𝑁  =  0  ↔  - 0  =  𝑁 ) ) | 
						
							| 8 | 5 6 7 | sylancl | ⊢ ( 𝑁  ∈  ℝ  →  ( - 𝑁  =  0  ↔  - 0  =  𝑁 ) ) | 
						
							| 9 |  | neg0 | ⊢ - 0  =  0 | 
						
							| 10 | 9 | eqeq1i | ⊢ ( - 0  =  𝑁  ↔  0  =  𝑁 ) | 
						
							| 11 |  | eqcom | ⊢ ( 0  =  𝑁  ↔  𝑁  =  0 ) | 
						
							| 12 | 10 11 | bitri | ⊢ ( - 0  =  𝑁  ↔  𝑁  =  0 ) | 
						
							| 13 | 8 12 | bitrdi | ⊢ ( 𝑁  ∈  ℝ  →  ( - 𝑁  =  0  ↔  𝑁  =  0 ) ) | 
						
							| 14 | 13 | orbi2d | ⊢ ( 𝑁  ∈  ℝ  →  ( ( - 𝑁  ∈  ℕ  ∨  - 𝑁  =  0 )  ↔  ( - 𝑁  ∈  ℕ  ∨  𝑁  =  0 ) ) ) | 
						
							| 15 | 4 14 | bitrid | ⊢ ( 𝑁  ∈  ℝ  →  ( - 𝑁  ∈  ℕ0  ↔  ( - 𝑁  ∈  ℕ  ∨  𝑁  =  0 ) ) ) | 
						
							| 16 | 3 15 | orbi12d | ⊢ ( 𝑁  ∈  ℝ  →  ( ( 𝑁  ∈  ℕ0  ∨  - 𝑁  ∈  ℕ0 )  ↔  ( ( 𝑁  ∈  ℕ  ∨  𝑁  =  0 )  ∨  ( - 𝑁  ∈  ℕ  ∨  𝑁  =  0 ) ) ) ) | 
						
							| 17 |  | 3orass | ⊢ ( ( 𝑁  =  0  ∨  𝑁  ∈  ℕ  ∨  - 𝑁  ∈  ℕ )  ↔  ( 𝑁  =  0  ∨  ( 𝑁  ∈  ℕ  ∨  - 𝑁  ∈  ℕ ) ) ) | 
						
							| 18 |  | orcom | ⊢ ( ( 𝑁  =  0  ∨  ( 𝑁  ∈  ℕ  ∨  - 𝑁  ∈  ℕ ) )  ↔  ( ( 𝑁  ∈  ℕ  ∨  - 𝑁  ∈  ℕ )  ∨  𝑁  =  0 ) ) | 
						
							| 19 |  | orordir | ⊢ ( ( ( 𝑁  ∈  ℕ  ∨  - 𝑁  ∈  ℕ )  ∨  𝑁  =  0 )  ↔  ( ( 𝑁  ∈  ℕ  ∨  𝑁  =  0 )  ∨  ( - 𝑁  ∈  ℕ  ∨  𝑁  =  0 ) ) ) | 
						
							| 20 | 17 18 19 | 3bitrri | ⊢ ( ( ( 𝑁  ∈  ℕ  ∨  𝑁  =  0 )  ∨  ( - 𝑁  ∈  ℕ  ∨  𝑁  =  0 ) )  ↔  ( 𝑁  =  0  ∨  𝑁  ∈  ℕ  ∨  - 𝑁  ∈  ℕ ) ) | 
						
							| 21 | 16 20 | bitr2di | ⊢ ( 𝑁  ∈  ℝ  →  ( ( 𝑁  =  0  ∨  𝑁  ∈  ℕ  ∨  - 𝑁  ∈  ℕ )  ↔  ( 𝑁  ∈  ℕ0  ∨  - 𝑁  ∈  ℕ0 ) ) ) | 
						
							| 22 | 21 | pm5.32i | ⊢ ( ( 𝑁  ∈  ℝ  ∧  ( 𝑁  =  0  ∨  𝑁  ∈  ℕ  ∨  - 𝑁  ∈  ℕ ) )  ↔  ( 𝑁  ∈  ℝ  ∧  ( 𝑁  ∈  ℕ0  ∨  - 𝑁  ∈  ℕ0 ) ) ) | 
						
							| 23 | 1 22 | bitri | ⊢ ( 𝑁  ∈  ℤ  ↔  ( 𝑁  ∈  ℝ  ∧  ( 𝑁  ∈  ℕ0  ∨  - 𝑁  ∈  ℕ0 ) ) ) |