Metamath Proof Explorer


Theorem elnn0

Description: Nonnegative integers expressed in terms of naturals and zero. (Contributed by Raph Levien, 10-Dec-2002)

Ref Expression
Assertion elnn0 ( 𝐴 ∈ ℕ0 ↔ ( 𝐴 ∈ ℕ ∨ 𝐴 = 0 ) )

Proof

Step Hyp Ref Expression
1 df-n0 0 = ( ℕ ∪ { 0 } )
2 1 eleq2i ( 𝐴 ∈ ℕ0𝐴 ∈ ( ℕ ∪ { 0 } ) )
3 elun ( 𝐴 ∈ ( ℕ ∪ { 0 } ) ↔ ( 𝐴 ∈ ℕ ∨ 𝐴 ∈ { 0 } ) )
4 c0ex 0 ∈ V
5 4 elsn2 ( 𝐴 ∈ { 0 } ↔ 𝐴 = 0 )
6 5 orbi2i ( ( 𝐴 ∈ ℕ ∨ 𝐴 ∈ { 0 } ) ↔ ( 𝐴 ∈ ℕ ∨ 𝐴 = 0 ) )
7 2 3 6 3bitri ( 𝐴 ∈ ℕ0 ↔ ( 𝐴 ∈ ℕ ∨ 𝐴 = 0 ) )