Metamath Proof Explorer


Theorem elsn2

Description: There is exactly one element in a singleton. Exercise 2 of TakeutiZaring p. 15. This variation requires only that B , rather than A , be a set. (Contributed by NM, 12-Jun-1994)

Ref Expression
Hypothesis elsn2.1 𝐵 ∈ V
Assertion elsn2 ( 𝐴 ∈ { 𝐵 } ↔ 𝐴 = 𝐵 )

Proof

Step Hyp Ref Expression
1 elsn2.1 𝐵 ∈ V
2 elsn2g ( 𝐵 ∈ V → ( 𝐴 ∈ { 𝐵 } ↔ 𝐴 = 𝐵 ) )
3 1 2 ax-mp ( 𝐴 ∈ { 𝐵 } ↔ 𝐴 = 𝐵 )