Metamath Proof Explorer


Theorem elsn2

Description: There is exactly one element in a singleton. Exercise 2 of TakeutiZaring p. 15. This variation requires only that B , rather than A , be a set. (Contributed by NM, 12-Jun-1994)

Ref Expression
Hypothesis elsn2.1
|- B e. _V
Assertion elsn2
|- ( A e. { B } <-> A = B )

Proof

Step Hyp Ref Expression
1 elsn2.1
 |-  B e. _V
2 elsn2g
 |-  ( B e. _V -> ( A e. { B } <-> A = B ) )
3 1 2 ax-mp
 |-  ( A e. { B } <-> A = B )